311 research outputs found

    Multi-Pulse Laser Wakefield Acceleration: A New Route to Efficient, High-Repetition-Rate Plasma Accelerators and High Flux Radiation Sources

    Get PDF
    Laser-driven plasma accelerators can generate accelerating gradients three orders of magnitude larger than radio-frequency accelerators and have achieved beam energies above 1 GeV in centimetre long stages. However, the pulse repetition rate and wall-plug efficiency of plasma accelerators is limited by the driving laser to less than approximately 1 Hz and 0.1% respectively. Here we investigate the prospects for exciting the plasma wave with trains of low-energy laser pulses rather than a single high-energy pulse. Resonantly exciting the wakefield in this way would enable the use of different technologies, such as fibre or thin-disc lasers, which are able to operate at multi-kilohertz pulse repetition rates and with wall-plug efficiencies two orders of magnitude higher than current laser systems. We outline the parameters of efficient, GeV-scale, 10-kHz plasma accelerators and show that they could drive compact X-ray sources with average photon fluxes comparable to those of third-generation light source but with significantly improved temporal resolution. Likewise FEL operation could be driven with comparable peak power but with significantly larger repetition rates than extant FELs

    Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser

    Get PDF
    We report the experimental generation of two-soliton molecules in an all-polarization-maintaining ytterbium-doped fiber laser operating in the normal dispersion regime. These molecules exhibit an independently evolving phase and are characterized by a regular spectral modulation pattern with a modulation depth of 80% measured as an averaged value. Moreover, the numerical modeling confirms that the limited modulation depth of the spectrum is caused by the evolution of the phase difference between the pulses. © 2010 Optical Society of America

    Generation of soliton molecules with independently evolving phase in a mode-locked fiber laser

    Get PDF
    We report the experimental generation of two-soliton molecules in an ytterbium-doped fiber laser. These molecules exhibit an independently evolving phase and are characterized by a regular spectral modulation pattern with a modulation depth of 80%. © 2010 Optical Society of America

    Ground states of two-dimensional ±\pmJ Edwards-Anderson spin glasses

    Full text link
    We present an exact algorithm for finding all the ground states of the two-dimensional Edwards-Anderson ±J\pm J spin glass and characterize its performance. We investigate how the ground states change with increasing system size and and with increasing antiferromagnetic bond ratio xx. We find that that some system properties have very large and strongly non-Gaussian variations between realizations.Comment: 15 pages, 21 figures, 2 tables, uses revtex4 macro

    Problems with Using the Normal Distribution – and Ways to Improve Quality and Efficiency of Data Analysis

    Get PDF
    Background: The Gaussian or normal distribution is the most established model to characterize quantitative variation of original data. Accordingly, data are summarized using the arithmetic mean and the standard deviation, by x 6 SD, or with the standard error of the mean, x 6 SEM. This, together with corresponding bars in graphical displays has become the standard to characterize variation. Methodology/Principal Findings: Here we question the adequacy of this characterization, and of the model. The published literature provides numerous examples for which such descriptions appear inappropriate because, based on the ‘‘95 % range check’’, their distributions are obviously skewed. In these cases, the symmetric characterization is a poor description and may trigger wrong conclusions. To solve the problem, it is enlightening to regard causes of variation. Multiplicative causes are by far more important than additive ones, in general, and benefit from a multiplicative (or log-) normal approach. Fortunately, quite similar to the normal, the log-normal distribution can now be handled easily and characterized at the level of the original data with the help of both, a new sign, x /, times-divide, and notation. Analogous to x 6 SD, it connects the multiplicative (or geometric) mean x * and the multiplicative standard deviation s * in the form x * x /s*, that is advantageous and recommended. Conclusions/Significance: The corresponding shift from the symmetric to the asymmetric view will substantially increas

    Magnetic field strength distribution of magnetic bright points inferred from filtergrams and spectro-polarimetric data

    Full text link
    Small scale magnetic fields can be observed on the Sun in G-band filtergrams as MBPs (magnetic bright points) or identified in spectro-polarimetric measurements due to enhanced signals of Stokes profiles. These magnetic fields and their dynamics play a crucial role in understanding the coronal heating problem and also in surface dynamo models. MBPs can theoretically be described to evolve out of a patch of a solar photospheric magnetic field with values below the equipartition field strength by the so-called convective collapse model. After the collapse, the magnetic field of MBPs reaches a higher stable magnetic field level. The magnetic field strength distribution of small scale magnetic fields as seen by MBPs is inferred. Furthermore, we want to test the model of convective collapse and the theoretically predicted stable value of about 1300 G. We used four different data sets of high-resolution Hinode/SOT observations that were recorded simultaneously with the broadband filter device (G-band, Ca II-H) and the spectro-polarimeter. To derive the magnetic field strength distribution of these small scale features, the spectropolarimeter (SP) data sets were treated by the Merlin inversion code. The four data sets comprise different solar surface types: active regions (a sunspot group and a region with pores), as well as quiet Sun. In all four cases the obtained magnetic field strength distribution of MBPs is similar and shows peaks around 1300 G. This agrees well with the theoretical prediction of the convective collapse model. The resulting magnetic field strength distribution can be fitted in each case by a model consisting of log-normal components. The important parameters, such as geometrical mean value and multiplicative standard deviation, are similar in all data sets, only the relative weighting of the components is different.Comment: 12 pages, 12 figures, final version to be published in Astronomy and Astrophysic

    Variation in the Large-Scale Organization of Gene Expression Levels in the Hippocampus Relates to Stable Epigenetic Variability in Behavior

    Get PDF
    Despite sharing the same genes, identical twins demonstrate substantial variability in behavioral traits and in their risk for disease. Epigenetic factors-DNA and chromatin modifications that affect levels of gene expression without affecting the DNA sequence-are thought to be important in establishing this variability. Epigenetically-mediated differences in the levels of gene expression that are associated with individual variability traditionally are thought to occur only in a gene-specific manner. We challenge this idea by exploring the large-scale organizational patterns of gene expression in an epigenetic model of behavioral variability.To study the effects of epigenetic influences on behavioral variability, we examine gene expression in genetically identical mice. Using a novel approach to microarray analysis, we show that variability in the large-scale organization of gene expression levels, rather than differences in the expression levels of specific genes, is associated with individual differences in behavior. Specifically, increased activity in the open field is associated with increased variance of log-transformed measures of gene expression in the hippocampus, a brain region involved in open field activity. Early life experience that increases adult activity in the open field also similarly modifies the variance of gene expression levels. The same association of the variance of gene expression levels with behavioral variability is found with levels of gene expression in the hippocampus of genetically heterogeneous outbred populations of mice, suggesting that variation in the large-scale organization of gene expression levels may also be relevant to phenotypic differences in outbred populations such as humans. We find that the increased variance in gene expression levels is attributable to an increasing separation of several large, log-normally distributed families of gene expression levels. We also show that the presence of these multiple log-normal distributions of gene expression levels is a universal characteristic of gene expression in eurkaryotes. We use data from the MicroArray Quality Control Project (MAQC) to demonstrate that our method is robust and that it reliably detects biological differences in the large-scale organization of gene expression levels.Our results contrast with the traditional belief that epigenetic effects on gene expression occur only at the level of specific genes and suggest instead that the large-scale organization of gene expression levels provides important insights into the relationship of gene expression with behavioral variability. Understanding the epigenetic, genetic, and environmental factors that regulate the large-scale organization of gene expression levels, and how changes in this large-scale organization influences brain development and behavior will be a major future challenge in the field of behavioral genomics

    Docking of LDCVs Is Modulated by Lower Intracellular [Ca2+] than Priming

    Get PDF
    Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca2+ concentration ([Ca2+]i). However, the functional implications of [Ca2+]i in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca2+]i. Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca2+]i. We found that a free [Ca2+]i of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca2+]i of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca2+ concentrations, with docking efficiency being the most robust at 500 nM
    corecore