131 research outputs found

    Association between molecular subtypes of colorectal cancer and patient survival

    Get PDF
    BACKGROUND and AIMS: Colorectal cancer (CRC) is a heterogeneous disease that can develop via several pathways. Different CRC subtypes, identified based on tumor markers, have been proposed to reflect these pathways. We evaluated the significance of these previously proposed classifications to survival. METHODS: Participants in the population-based Seattle Colon Cancer Family Registry were diagnosed with invasive CRC from 1998 through 2007 in western Washington State (N = 2706), and followed for survival through 2012. Tumor samples were collected from 2050 participants and classified into 5 subtypes based on combinations of tumor markers: type 1 (microsatellite instability [MSI]-high, CpG island methylator phenotype [CIMP] -positive, positive for BRAF mutation, negative for KRAS mutation); type 2 (microsatellite stable [MSS] or MSI-low, CIMP-positive, positive for BRAF mutation, negative for KRAS mutation); type 3 (MSS or MSI low, non-CIMP, negative for BRAF mutation, positive for KRAS mutation); type 4 (MSS or MSI-low, non-CIMP, negative for mutations in BRAF and KRAS); and type 5 (MSI-high, non-CIMP, negative for mutations in BRAF and KRAS). Multiple imputation was used to impute tumor markers for those missing data on 1-3 markers. We used Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations of subtypes with disease-specific and overall mortality, adjusting for age, sex, body mass, diagnosis year, and smoking history. RESULTS: Compared with participants with type 4 tumors (the most predominant), participants with type 2 tumors had the highest disease-specific mortality (HR = 2.20, 95% CI: 1.47-3.31); subjects with type 3 tumors also had higher disease-specific mortality (HR = 1.32, 95% CI: 1.07-1.63). Subjects with type 5 tumors had the lowest disease-specific mortality (HR = 0.30, 95% CI: 0.14-0.66). Associations with overall mortality were similar to those with disease-specific mortality. CONCLUSIONS: Based on a large, population-based study, CRC subtypes, defined by proposed etiologic pathways, are associated with marked differences in survival. These findings indicate the clinical importance of studies into the molecular heterogeneity of CRC

    Specificity of the Multi-Target Stool DNA Test for Colorectal Cancer Screening in Average-Risk 45–49 Year-Olds: A Cross-Sectional Study

    Get PDF
    High-specificity colorectal cancer screening is desirable to triage patients <50 years for colonoscopy; however, most endorsed colorectal cancer screening tests have not been rigorously evaluated in younger populations. This prospective cross-sectional study determined the specificity of the multitarget stool DNA (mt-sDNA) test in an average-risk screening population of 45 to 49 year-olds. Specificity was the primary outcome and was measured in participants without colorectal cancer or advanced precancerous lesions [APL– advanced adenomas (AA), and sessile serrated lesions ≥10 mm], and in the subgroup of participants with negative colonoscopic findings. APL sensitivity was a secondary outcome. The evaluable cohort included those who completed the study without protocol deviations and had a usable mt-sDNA test. Of 983 enrolled participants, 816 formed the evaluable cohort, with a mean age of 47.8 (SD, 1.5) years; 47.7% were women. No participants had colorectal cancer, 49 had APL, 253 had nonadvanced adenomas (NAA), and 514 had negative colonoscopic findings. mt-sDNA test specificity was 95.2% (95% CI, 93.4–96.6) in participants with NAA or negative findings [96.3% (confidence interval (CI), 94.3%–97.8%)] in those with negative findings, and did not differ by sex (P = 0.75) or race (P = 0.36) in participants with NAA or negative findings. Sensitivity for APL was 32.7% (CI, 19.9–47.5%), with most APL (83.7%) measuring 10–19 mm and none having high-grade dysplasia. The area under the ROC curve for discriminating between APL and lesser findings was 0.72 (CI, 0.64–0.81). mt-sDNA's high specificity would help minimize risk from unnecessary diagnostic procedures in this age group. This study shows that mt-sDNA has high specificity among average-risk 45 to 49-year olds, supporting its use as a noninvasive option for colorectal cancer screening

    Accuracy of CT Colonography for Detection of Large Adenomas and Cancers

    Get PDF
    Background Computed tomographic (CT) colonography is a noninvasive option in screening for colorectal cancer. However, its accuracy as a screening tool in asymptomatic adults has not been well defined. Methods We recruited 2600 asymptomatic study participants, 50 years of age or older, at 15 study centers. CT colonographic images were acquired with the use of standard bowel preparation, stool and fluid tagging, mechanical insufflation, and multidetector-row CT scanners (with 16 or more rows). Radiologists trained in CT colonography reported all lesions measuring 5 mm or more in diameter. Optical colonoscopy and histologic review were performed according to established clinical protocols at each center and served as the reference standard. The primary end point was detection by CT colonography of histologically confirmed large adenomas and adenocarcinomas (10 mm in diameter or larger) that had been detected by colonoscopy; detection of smaller colorectal lesions (6 to 9 mm in diameter) was also evaluated. Results Complete data were available for 2531 participants (97%). For large adenomas and cancers, the mean (ÂąSE) per-patient estimates of the sensitivity, specificity, positive and negative predictive values, and area under the receiver-operating-characteristic curve for CT colonography were 0.90Âą0.03, 0.86Âą0.02, 0.23Âą0.02, 0.99Âą Conclusions In this study of asymptomatic adults, CT colonographic screening identified 90% of subjects with adenomas or cancers measuring 10 mm or more in diameter. These findings augment published data on the role of CT colonography in screening patients with an average risk of colorectal cancer. (ClinicalTrials.gov number, NCT00084929; American College of Radiology Imaging Network [ACRIN] number, 6664.

    Association Between Molecular Subtypes of Colorectal Cancer and Patient Survival

    Get PDF
    Colorectal cancer (CRC) is a heterogeneous disease that can develop via several pathways. Different CRC subtypes, identified based on tumor markers, have been proposed to reflect these pathways. We evaluated the significance of these previously proposed classifications to survival

    Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures

    Full text link
    Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 x 10(-23) and p = 6 x 10(-11), respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers. Germline biallelic pathogenic MUTYH variants predispose patients to colorectal cancer (CRC); however, approaches to identify MUTYH variant carriers are lacking. Here, the authors evaluated mutational signatures that could distinguish MUTYH carriers in large CRC cohorts, and found MUTYH-associated somatic mutations

    Association between i.v. thrombolysis volume and door-to-needle times in acute ischemic stroke

    Get PDF
    Centralization of intravenous thrombolysis (IVT) for acute ischemic stroke in high-volume centers is believed to improve the door-to-needle times (DNT), but limited data support this assumption. We examined the association between DNT and IVT volume in a large Dutch province. We identified consecutive patients treated with IVT between January 2009 and 2013. Based on annualized IVT volume, hospitals were categorized as low-volume (≤ 24), medium-volume (25-49) or high-volume (≥ 50). In logistic regression analysis, low-volume hospitals were used as reference category. Of 17,332 stroke patients from 11 participating hospitals, 1962 received IVT (11.3 %). We excluded 140 patients because of unknown DNT (n = 86) or in-hospital stroke (n = 54). There were two low-volume (total 101 patients), five medium-volume (747 patients) and four high-volume hospitals (974 patients). Median DNT was shorter in high-volume hospitals (30 min) than in medium-volume (42 min, p < 0.001) and low-volume hospitals (38 min, p < 0.001). Patients admitted to high-volume hospitals had a higher chance of DNT < 30 min (adjusted OR 3.13, 95 % CI 1.70-5.75), lower risk of symptomatic intracerebral hemorrhage (adjusted OR 0.39, 95 % CI 0.16-0.92), and a lower mortality risk (adjusted OR 0.45, 95 % CI 0.21-1.01), compared to low-volume centers. There was no difference in DNT between low- and medium-volume hospitals. Onset-to-needle times (ONT) did not differ between the groups. Hospitals in this Dutch province generally achieved short DNTs. Despite this overall good performance, higher IVT volumes were associated with shorter DNTs and lower complication risks. The ONT was not associated with IVT volum

    Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    Get PDF
    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort

    With Screening Colonoscopy, What You See is What You Get

    No full text
    • …
    corecore