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ABSTRACT 

Background and Aims.  Colorectal cancer (CRC) is a heterogeneous disease that can develop 

via several pathways. Different CRC subtypes, identified based on tumor markers, have been 

proposed to reflect these pathways. We evaluated the significance of these previously proposed 

classifications to survival.  

Methods.  Participants in the population-based Seattle Colon Cancer Family Registry were 

diagnosed with invasive CRC from 1998 through 2007 in western Washington State (n=2706), 

and followed for survival through 2012. Tumor samples were collected from 2050 participants 

and classified into 5 subtypes based on combinations of tumor markers: type 1 (microsatellite 

instability [MSI] high, CpG island methylator phenotype [CIMP] positive, positive for BRAF 

mutation, negative for KRAS mutation); type 2 (microsatellite stable [MSS] or MSI-low, CIMP-

positive, positive for BRAF mutation, negative for KRAS mutation); type 3 (MSS or MSI-low, 

non-CIMP, negative for BRAF mutation, positive for KRAS mutation); type 4 (MSS or MSI-low, 

non-CIMP, negative for mutations in BRAF and KRAS); and type 5 (MSI-high, non-CIMP, 

negative for mutations in BRAF and KRAS). Multiple imputation was used to impute tumor 

markers for those missing data on 1-3 markers. We used Cox regression to estimate hazard 

ratios (HR) and 95% confidence intervals (CI) for associations of subtypes with disease-specific 

and overall mortality, adjusting for age, sex, body mass, diagnosis year, and smoking history.   

Results.  Compared to participants with type 4 tumors (the most predominant), participants with 

type 2 tumors had the highest disease-specific mortality (HR=2.20, 95% CI: 1.47-3.31); subjects 

with type 3 tumors also had higher disease-specific mortality (HR=1.32, 95% CI: 1.07-1.63). 

Subjects with type 5 tumors had the lowest disease-specific mortality (HR=0.30, 95% CI: 0.14-

0.66). Associations with overall mortality were similar to those with disease-specific mortality. 
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Conclusions.  Based on a large, population-based study, CRC subtypes, defined by proposed 

etiologic pathways, are associated with marked differences in survival. These findings indicate 

the clinical importance of studies into the molecular heterogeneity of CRC. 

 

Keywords:  oncogene, methylation, serrated colorectal cancer, prognostic factor 
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INTRODUCTION 

Increasing evidence indicates that colorectal cancer (CRC) is a biologically 

heterogeneous disease that can develop via a number of distinct pathways involving different 

combinations of genetic and epigenetic changes.1,2 Proposed subtype classifications for CRC, 

based on the presence of microsatellite instability (MSI), the CpG island methylator phenotype 

(CIMP), and somatic mutations in BRAF and KRAS, are thought to approximate these distinct 

pathways.1,2 In particular, CRC reflective of the “traditional” adenoma-carcinoma pathway has 

been described as typically demonstrating absent (microsatellite stable, MSS) to low-level MSI 

(MSI-low) without CIMP and without somatic BRAF or KRAS mutations; CRC resulting from a 

“serrated” pathway has been described as frequently BRAF-mutated and CIMP-positive; and an 

additional pathway has been suggested for KRAS-mutated CRC that is MSS/MSI-low and 

CIMP-low.2,3 

The biologic distinctions between CRC subtypes resulting from different etiologic 

pathways may plausibly translate to differences in survival. As tumor markers that may reflect 

such different pathways, MSI, CIMP, BRAF-mutation, and KRAS-mutation status have each 

been studied extensively, with evidence of differences in the distribution of tumor site, sex, age 

and stage at diagnosis, and survival.4-22 However, the significance of subtype classifications 

based on combinations of these four tumor markers with respect to survival has been minimally 

described.3,23 In the only prior study to evaluate differences in survival across CRC subtypes 

defined by these four tumor markers in combination, Samadder et al. suggested that CRC with 

a BRAF-mutated/CIMP-high phenotype, suggestive of the serrated pathway, was associated 

with modestly worse survival than CRC with a MSS/CIMP-negative/BRAF-mutation 

negative/KRAS-mutation negative phenotype, suggestive of the traditional pathway.3   

Using data from the population-based Seattle Colon Cancer Family Registry (SCCFR) 

and the Postmenopausal Hormones Supplemental Study to the SCCFR (PMH-SCCFR),24,25 we 
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further explored the relationship between CRC molecular subtypes, defined by common tumor 

marker combinations, and survival. 

 

METHODS  

Study population 

 A description of the study populations has been published elsewhere.24,25 Briefly, 

SCCFR study participants included persons diagnosed with incident invasive CRC between 

January 1998 and June 2002 who, at the time of diagnosis, were aged 20-74 years and resided 

in King, Pierce, or Snohomish counties of Washington State (Supplementary Table 1). Over this 

same period, women aged 50-74 at CRC diagnosis and residing in 10 surrounding counties 

were also recruited for participation in the PMH-SCCFR. During a second SCCFR recruitment 

phase (diagnosis dates April 2002 to July 2007), eligible participants were identified as 

individuals diagnosed at ages 18-49 with invasive CRC within the combined 13-county region. 

All cases were identified through the population-based Surveillance, Epidemiology, and End 

Results (SEER) cancer registry serving western Washington State. Eligibility was limited to 

English speakers with publicly-available telephone numbers. Of 3,525 eligible individuals 

contacted, 302 (9%) were deceased, 401 (11%) refused participation, 92 (3%) were lost to 

follow-up prior to interview, and 24 (1%) completed only a partial interview. Among participants 

who completed the interview (N=2,706), adequate tumor specimens were available for 77% 

(N=2,080). Participants for whom tumor specimens were not obtained were excluded from this 

analysis. 

This study was approved by the Institutional Review Board of the Fred Hutchinson 

Cancer Research Center in accordance with assurances filed with and approved by the U.S. 

Department of Health and Human Services. 

Tumor characteristics 
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 DNA extracted from paraffin-embedded formalin-fixed diagnostic tumor tissue 

specimens was used in tumor marker testing. Testing for MSI was based on a 10-gene panel in 

DNA from tumor and normal surrounding tissue (BAT25, BAT26, BAT40, MYCL, D5S346, 

D17S250, ACTC, D18S55, D10S197, BAT34C4) for the majority of cases (N=1,430):24,26 tumors 

were classified as MSI-high if instability was observed for ≥30% of markers, and MSS/MSI-low if 

instability was observed in <30% of markers. For other cases (N=534), MSI status was based 

on immunohistochemistry testing of four markers (MLH1, MSH2, MSH6, PMS2): cases whose 

tissue exhibited positive staining for all markers were considered MSS/MSI-low, whereas cases 

negative for the expression of at least one marker were considered MSI-high.27,28 Tumor DNA 

was tested for the p.V600E BRAF mutation (N=1,948) using a fluorescent allele-specific PCR 

assay as described previously;29 this mutation accounts for ~90% of BRAF mutations in CRC.30 

Mutations in KRAS codons 12 and 13 were identified through forward and reverse sequencing 

of amplified tumor DNA (N=1,894);8,31 mutations in this hotspot region account for ~80% of 

KRAS mutations in CRC.32,33 CIMP testing was completed for a large subset of cases (N=1,508) 

based on a validated quantitative DNA methylation assay using a five-gene panel (CACNA1G, 

IGF2, NEUROG1, RUNX3, SOCS1).34-36 As described elsewhere,34 tumors were classified as 

CIMP-positive if the percentage of methylated reference (PMR) ratio was ≥10 for at least three 

of five markers and as non-CIMP if the PMR ratio was ≥10 for fewer than three markers; PMR is 

calculated as the amount of methylated tumor DNA at a specific locus (normalized to input 

bisulfite DNA amount measured at ALU repetitive elements) divided by the ALU-normalized 

amount in a methylated reference sample, multiplied by 100. Tumor site and stage information 

was available from SEER.  

Subtype classifications 

 Tumor subtypes were defined as follows, consistent with previously-suggested 

classifications:1,2 1) “type 1” (i.e., MSI-high, CIMP-positive, BRAF-mutated, KRAS-mutation 

negative); 2) “type 2” (i.e., MSS/MSI-low, CIMP-positive, BRAF-mutated, KRAS-mutation 
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negative); 3) “type 3” (i.e., MSS/MSI-low, non-CIMP, BRAF-mutation negative, KRAS-mutated); 

4) “type 4” (i.e., MSS/MSI-low, non-CIMP, BRAF-mutation negative, KRAS-mutation negative); 

and 5) “type 5” (i.e., MSI-high, non-CIMP, BRAF mutation-negative, KRAS-mutation negative).  

Other marker combinations were grouped together as an “other” category for tabulations. In 

sensitivity analyses, we explored changes to the type 3 subtype classification for comparison to 

previous reports,3 removing cases for whom all methylation markers had a PMR ratio <10 from 

this subgroup.  

 Of the N=2080 cases for whom tumor tissue was available, N=30 were excluded due to 

insufficient tissue or uninformative assays. Multiple imputation was used to approximate tumor 

marker status for cases with one (N=564), two (N=104), or three missing markers (N=38):37,38 

the imputation model included variables for MSI, BRAF- and KRAS-mutation status, methylation 

status for the five genes used in classifying CIMP, stage, histology, sex, age at diagnosis, 

diagnosis year, body mass index (BMI), height, smoking history, use of non-steroidal anti-

inflammatory drugs at diagnosis, history of endoscopic screening prior to diagnosis, education, 

race, first line of therapy, time from diagnosis to interview, censoring indicators, and analysis 

time. Iterative rounds of imputation (N=25) were performed using the mi command in STATA SE 

version 13.1 (College Station, Texas). Tumor subtype classifications were thus determined on 

the basis of assayed and, as necessary, imputed tumor markers. In addition to analyses utilizing 

these imputed data, we conducted sensitivity analyses using a complete-case approach, 

wherein only cases with complete tumor marker data were included. 

Outcome information 

Vital status, death date, and cause of death were determined through linkage to SEER 

and the National Death Index. CRC-specific deaths included those with an underlying cause 

attributed to ICD-10 codes C18.0-C20.0 or C26.0.39 Vital status linkage was performed 

periodically, with the most recent linkage capturing deaths occurring through December, 2012. 

Statistical analysis 
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We used Cox proportional hazards regression to evaluate relative differences in survival 

after diagnosis by tumor subtype, using the type 4 subtype as the referent category. The time 

axis was defined as days since diagnosis, with left truncation to account for time between 

diagnosis and enrollment (mean=8.6 months). We conducted separate analyses for CRC-

specific and overall survival. Participants alive at their last vital status assessment were 

censored at that date; in analyses of CRC-specific survival, persons who died due to causes 

other than CRC were censored at the time of death. Proportional hazards assumptions were 

assessed by testing for a non-zero slope of the scaled Schoenfeld residuals on ranked failure 

times.40 

Regression models included adjustment terms for age (continuous and ten-year 

categories), sex, BMI (continuous), diagnosis year, and cigarette smoking history (never, 

former, current smoker). In secondary analyses, we further adjusted for stage via stratification of 

the baseline hazards. We also assessed potential confounding by several additional 

characteristics: tumor site, family history of CRC, race, education, history of endoscopy 

screening prior to diagnosis, non-steroidal anti-inflammatory drug use at the time of diagnosis, 

and receipt of chemotherapy as first course of treatment. However, these latter factors were not 

retained in our analytic models as adjustment for each variable had minimal impact on point 

estimates (i.e., <5% change). In sensitivity analyses, we also evaluated associations separately 

by sex and study phase [first (1998-2002), second (2002-2007)]. To account for multiple 

comparisons we used Hochberg’s step-up method to control for the family-wise error rate of 

0.05 across each family of pairwise comparisons across subtypes (i.e., 5 tests per family).41  

 

RESULTS 

 Among the N=2,080 cases with available tumor tissue, 99% (N=2,050) had information 

on at least one tumor marker and were included in the analysis; 65% (N=1,344) had complete 

data on all tumor markers. Approximately 16% of cases had tumors that were MSI-high, 13% 
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had tumors that were BRAF-mutated, 31% had KRAS-mutated tumors, and 18% had CIMP-

positive tumors.  Among those with complete tumor marker data, 7% (N=100) were classified as 

having the type 1 subtype, 4% (N=55) had type 2 CRC, 26% (N=353) had type 3 CRC, 47% 

(N=631) had type 4 CRC, and 4% (N=50) were classified as having type 5 CRC; approximately 

12% exhibited other tumor marker combinations (Supplementary Figure 1). Cases with types 1 

or 2 CRC, particularly those with type 2 CRC, had the highest mean age at diagnosis and were 

most likely to be female (Table 1). Type 1, 2, and 5 tumors were rarely located outside the 

proximal colon (≤20%). Cases with type 2 CRC were least likely to have been diagnosed with 

stage I disease and had the lowest 5-year survival (46%). Cases with missing data on one to 

three tumor markers were younger at diagnosis and more likely to have stage IV CRC relative to 

other case groups. 

 Kaplan-Meier curves illustrate unadjusted differences in CRC-specific (Figure 1) and 

overall survival (Figure 2) across subtypes. Observed patterns of survival differences were 

maintained in multivariable-adjusted analyses (Table 2).  With respect to both outcomes, 

mortality rates were highest for type 2 CRC (HR=2.20, 95% CI: 1.47-3.31, and HR=1.55, 95% 

CI: 1.08-2.22 for CRC-specific and overall mortality, respectively) and lowest for type 5 CRC 

(HR=0.30, 95% CI: 0.14-0.66, and HR=0.61, 95% CI: 0.39-0.96); however, after accounting for 

multiple comparisons, associations with overall mortality were not statistically significant for 

these subgroups. CRC-specific survival was similarly favorable for both MSI-high subtypes (i.e., 

types 1 and 5). CRC-specific mortality was statistically significantly higher in the type 3 versus 

type 4 subgroup (HR=1.32, 95% CI: 1.07-1.63); a similar association was noted with respect to 

overall mortality.  

 Adjustment for stage at diagnosis had a modest impact on observed associations. Most 

point estimates were slightly attenuated with stage-adjustment, but patterns of survival 

differences across subtypes persisted (Table 2). Sensitivity analyses restricted to cases with 

complete tumor marker data showed more pronounced survival differences across subtypes 
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(Table 2). In sensitivity analyses excluding cases with a PMR ratio <10 on all CIMP markers 

from the type 3 subgroup, the poor survival profile of this group persisted (CRC-specific survival 

HR=1.44, 95% CI: 1.04-1.98, overall survival HR=1.35, 95% CI: 1.04-1.74, not shown).  In other 

sensitivity analyses, patterns of survival differences by subtype were similar across strata 

defined by sex and study phase; in particular, in all strata, the type 2 case group was associated 

with the poorest survival (not shown). 

 

DISCUSSION 

In this large population-based cohort of individuals with incident invasive CRC, we found 

important differences in survival across CRC subtypes defined on the basis of pre-specified 

combinations of MSI, CIMP, BRAF-mutation, and KRAS-mutation status. Patients with MSI-high 

subtypes of disease (i.e., types 1 and 5) had the most favorable survival, whereas those with 

type 2 CRC (MSS/MSI-low, CIMP-positive, BRAF-mutated, KRAS mutation negative) had the 

highest mortality. Observed survival differences were consistent with differences in the 

distribution of stage across subtypes and stage-adjustment did diminish the strength and 

statistical significance of most findings; however, patterns of differences in survival were 

maintained after stage-adjustment. These findings contribute to a small but growing literature 

supporting the significance of CRC-subtype classifications defined by combinations of these 

tumor markers. 

The subtypes evaluated in the present analysis are based on classifications first 

proposed by Jass in 2007.1 Jass’ types 1 and 2 correspond to the type 1 and 2 subtypes 

evaluated here, respectively, and were originally proposed as reflecting a serrated morphology, 

with origins in serrated polyps. Jass’ type 3, similar to our type 3 subtype but restricted to CIMP-

low tumors, was proposed as reflecting an alternate serrated pathway, with origins in KRAS-

mutated adenomas, whereas Jass’ type 4 subtype, consistent with our type 4 subtype, was 

proposed to reflect CRC arising from the traditional adenoma-carcinoma sequence. Jass’ type 5 
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subtype, also consistent with our type 5 subtype classification, was suggested to be indicative of 

possible Lynch Syndrome as is reflected in the high prevalence of CRC family history in our 

type 5 case group.  

To our knowledge, only one prior study has evaluated survival differences across CRC 

subtypes derived from the classifications proposed by Jass.3 Samadder et al. noted differences 

in age at diagnosis, tumor site, and grade across three CRC subtypes defined by combinations 

of MSI, CIMP, BRAF, and KRAS status in the Iowa Women’s Health Study (IWHS); however, no 

significant differences in subtype-specific survival were observed.3 Noted limitations of the 

IWHS include restricted demographics and sample size. Also, the tumor subtypes of greatest 

significance in the present analysis were not distinguished by Samadder et al.: the authors 

combined type 1 and 2 case groups into a single serrated subtype classified without regard to 

MSI, and did not evaluate the type 5 subtype as a distinct case group.3  Although we found type 

1 and 2 CRC subtypes to be similar with the respect to their later age at diagnosis and proximal 

site distribution, we identified very different survival trajectories for these subtypes. This 

suggests that MSI status is a clinically-relevant marker of distinction in individuals with CRC 

suggestive of the serrated pathway. The observed favorable survival profile of the type 5 

subtype further supports the need to distinguish MSI-high cases in CRC-subtype classification.   

Most prior studies assessing the prognostic significance of MSI, CIMP, and BRAF- and 

KRAS-mutations in CRC have evaluated these markers individually.4-15  MSI status is most 

consistently associated with survival:15,42 in a recent meta-analysis, MSI-high CRC was 

associated with 40% better overall survival than MSS CRC (95% CI: 31-47%).15
  The BRAF 

V600E mutation has also consistently been associated with poor survival relative to CRC that is 

not BRAF mutated.9-14,17-19 In contrast, studies of CRC survival in relation to CIMP18-20 and 

KRAS-mutation status4-8,10,11 have been inconsistent.  Studies assessing associations between 

pairwise combinations of markers and CRC survival further support our findings of a complex 

interplay among these markers. In particular, previous studies have suggested that the 
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prognostic significance of BRAF-mutation status is more pronounced in, if not restricted to, 

patients with MSS/MSI-low CRC.9,11,12,19,20,43 Other studies have reported higher mortality in 

MSS/CIMP-positive CRC relative to CRC with other MSI/CIMP combinations.44,45 

The biologic basis for the observed differences in subtype-specific CRC survival remains 

an important topic for future research. Although the type 2 and 3 subtypes were diagnosed at an 

advanced stage, our finding that the higher mortality in these subtypes persisted after controlling 

for stage suggests that these are more inherently aggressive tumors and not simply tumors that 

were diagnosed late. Differences in response to available cancer therapies may also contribute 

to subtype-specific survival differences. Over the time period during which study participants 

were diagnosed with CRC, testing for the tumor markers in the present analysis was not 

clinically indicated for treatment decision-making. However, differential response to 5-

fluorouracil-based chemotherapy by MSI46,47 and CIMP status48 has been reported, and 

differential response to newer anti-EGFR therapies (e.g., cetuximab) on the basis of KRAS and 

BRAF are well-documented.10,49,50 Thus, the relationship of these subtype classifications to CRC 

treatment response merits further investigation. 

The results of the present investigation should be interpreted in the context of study 

limitations. Information on the clinical management of CRC patients included in the analysis was 

limited; however, as described above, treatments were unlikely to differ across the evaluated 

CRC subtypes over the study period beyond any differences due to stage at diagnosis, 

diagnosis year, and tumor site. Tumor marker data were missing for a substantial proportion of 

cases. Participants for whom no tumor marker data was available were excluded from the 

analysis and were, on average, younger at diagnosis (mean age=53 versus 58 in included 

cases), more likely to be non-white (39% versus 17%), had lower five-year overall survival (63% 

versus 74%), and later stage at diagnosis (21% versus 11% distant stage). The prevalence of 

stage IV disease was lower in our study population than is reflected in SEER estimates for the 

study area,51 further suggesting an exclusion of late-stage disease. Thus, it is plausible that the 
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distribution of tumor subtypes among excluded cases differed from that among included cases.  

We used multiple imputation to account for missing tumor marker data in cases with information 

on one to three tumor markers (N=706). Simulation studies comparing multiple imputation to 

complete-case analyses suggest that excluding observations with missing data can lead to 

considerable bias in regression coefficients and that such bias can be reduced via multiple 

imputation.37,38 The fact that there were only modest differences in point estimates from multiple 

imputation versus complete-case analyses reflects the robustness of our conclusions to various 

analytic approaches. When tumor marker data were available, those data were based on single 

assays for each marker and, thus, do not capture information on intra-tumoral heterogeneity. 

Lastly, the tumor markers evaluated in the present analysis represent only a subset of those 

that might be relevant to CRC survival and subtype classification. It is likely that some etiologic 

and clinical heterogeneity remains within each of the evaluated CRC subtypes. Characterization 

of additional somatic mutations (e.g., in KRAS codon 61), gene amplifications (e.g., in EGFR), 

methylation sites (e.g., in CDKN2A), and other molecular alterations was beyond the scope of 

the present analysis, but could facilitate more refined and detailed classification of 

homogeneous CRC subtypes.  

 Important strengths of the present study include a long follow-up and large study 

population, which allowed for the evaluation of survival outcomes in less common CRC 

subtypes. The two smallest subtypes evaluated in the present analysis (i.e., types 2 and 5) 

demonstrated the most pronounced differences in survival. Further evaluation of these 

important CRC subtypes will require larger sample size.   

Here we extend previous reports regarding the relevance of CRC subtypes defined 

jointly by MSI, CIMP, and BRAF- and KRAS-mutation status. Our findings suggest that the 

biologic distinctions between these subtypes translate to important differences in survival and 

highlight a poorer survival for CRC demonstrating the type 2, serrated-like phenotype.  These 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

results support the value of considering these four markers in combination, in addition to their 

individual value as predictive and prognostic markers for CRC. 
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FIGURE LEGENDS. 

Figure 1. Kaplan-Meier survival curves comparing disease-specific survival in colorectal cancer 

patients by tumor subtype: type 1 (dashed black), type 2 (dotted black), type 3 (solid gray), type 

4 (solid black), type 5 (dashed gray), some other tumor marker combination (dotted gray). 

Subtypes are defined as follows: type 1 = MSI-high, BRAF-mutated, KRAS-mutation negative, 

CIMP+; type 2 = MSS/MSI-low, BRAF-mutated, KRAS-mutation negative, CIMP+; type 3 = 

MSS/MSI-low, BRAF-mutation negative, KRAS-mutated, non-CIMP; type 4 = MSS/MSI-low, 

BRAF-mutation negative, KRAS-mutation negative, non-CIMP; type 5 = MSI-high, BRAF-

mutation negative, KRAS-mutation negative, non-CIMP 

 

Figure 2. Kaplan-Meier survival curves comparing overall survival in colorectal cancer patients 

by tumor subtype: type 1 (dashed black), type 2 (dotted black), type 3 (solid gray), type 4 (solid 

black), type 5 (dashed gray), some other tumor marker combination (dotted gray). Subtypes are 

defined as follows: type 1 = MSI-high, BRAF-mutated, KRAS-mutation negative, CIMP+; type 2 

= MSS/MSI-low, BRAF-mutated, KRAS-mutation negative, CIMP+; type 3 = MSS/MSI-low, 

BRAF-mutation negative, KRAS-mutated, non-CIMP; type 4 = MSS/MSI-low, BRAF-mutation 

negative, KRAS-mutation negative, non-CIMP; type 5 = MSI-high, BRAF-mutation negative, 

KRAS-mutation negative, non-CIMP 

 

 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

REFERENCES 

1. Jass JR. Classification of colorectal cancer based on correlation of clinical, 

morphological and molecular features. Histopathology 2007;50:113-30. 

2. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. 

Gastroenterology 2010;138:2088-100. 

3. Samadder NJ, Vierkant RA, Tillmans LS, et al. Associations Between Colorectal Cancer 

Molecular Markers and Pathways With Clinicopathologic Features in Older Women. 

Gastroenterology 2013;145:348-56. 

4. Samowitz WS, Curtin K, Schaffer D, et al. Relationship of Ki-ras mutations in colon 

cancers to tumor location, stage, and survival: A population-based study. Cancer 

Epidemiology Biomarkers & Prevention 2000;9:1193-1197. 

5. Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with 

colorectal cancer: the 'RASCAL II' study. Br J Cancer 2001;85:692-6. 

6. Ogino S, Meyerhardt JA, Irahara N, et al. KRAS mutation in stage III colon cancer and 

clinical outcome following intergroup trial CALGB 89803. Clin Cancer Res 2009;15:7322-

9. 

7. Imamura Y, Morikawa T, Liao X, Lochhead P, Kuchiba A, Yamauchi M, Qian ZR, 

Nishihara R, Meyerhardt JA, Haigis KM, Fuchs CM, Ogino S. Specific mutations in 

KRAS codons 12 and 13, and patient prognosis in 1075 BRAF-wild-type colorectal 

cancers. Clin Cancer Res 2012;18:4753-63. 

8. Phipps AI, Buchanan DD, Makar KW, et al. KRAS-mutation status in relation to 

colorectal cancer survival: the joint impact of correlated tumour markers. Br J Cancer 

2013;108:1757-64. 

9. Phipps AI, Buchanan DD, Makar KW, et al. BRAF mutation status and survival after 

colorectal cancer diagnosis according to patient and tumor characteristics. Cancer 

Epidemiol Biomarkers Prev 2012;21:1792-8. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 
 

10. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA 

mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory 

metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 

2010;11:753-62. 

11. Roth AD, Tejpar S, Delorenzi M, et al. Prognostic role of KRAS and BRAF in stage II and 

III resected colon cancer: results of the translational study on the PETACC-3, EORTC 

40993, SAKK 60-00 trial. J Clin Oncol 2010;28:466-74. 

12. Farina-Sarasqueta A, van Lijnschoten G, Moerland E, et al. The BRAF V600E mutation 

is an independent prognostic factor for survival in stage II and stage III colon cancer 

patients. Ann Oncol 2010;21:2396-402. 

13. Kalady MF, Dejulius KL, Sanchez JA, et al. BRAF mutations in colorectal cancer are 

associated with distinct clinical characteristics and worse prognosis. Dis Colon Rectum 

2012;55:128-33. 

14. Ogino S, Shima K, Meyerhardt JA, et al. Predictive and prognostic roles of BRAF 

mutation in stage III colon cancer: results from intergroup trial CALGB 89803. Clin 

Cancer Res 2012;18:890-900. 

15. Guastadisegni C, Colafranceschi M, Ottini L, et al. Microsatellite instability as a marker 

of prognosis and response to therapy: A meta-analysis of colorectal cancer survival 

data. Eur J Cancer 2010;46:2788-98. 

16. Wang C, van Rijnsoever M, Grieu F, et al. Prognostic significance of microsatellite 

instability and Ki-ras mutation type in stage II colorectal cancer. Oncology 2003;64:259-

65. 

17. French AJ, Sargent DJ, Burgart LJ, et al. Prognostic significance of defective mismatch 

repair and BRAF V600E in patients with colon cancer. Clin Cancer Res 2008;14:3408-

15. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 
 

18. Samowitz WS, Sweeney C, Herrick J, et al. Poor survival associated with the BRAF 

V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005;65:6063-9. 

19. Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite 

instability, BRAF mutation and clinical outcome in colon cancer. Gut 2009;58:90-6. 

20. Lee S, Cho NY, Choi M, et al. Clinicopathological features of CpG island methylator 

phenotype-positive colorectal cancer and its adverse prognosis in relation to 

KRAS/BRAF mutation. Pathol Int 2008;58:104-13. 

21. Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and 

BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal 

cancer. J Clin Oncol 2011;29:1261-70. 

22. Nash GM, Gimbel M, Cohen AM, et al. KRAS mutation and microsatellite instability: two 

genetic markers of early tumor development that influence the prognosis of colorectal 

cancer. Ann Surg Oncol 2010;17:416-24. 

23. Zlobec I, Bihl MP, Foerster A, et al. Stratification and prognostic relevance of Jass's 

molecular classification of colorectal cancer. Front Oncol 2012;2:7. 

24. Newcomb PA, Baron J, Cotterchio M, et al. Colon Cancer Family Registry: an 

international resource for studies of the genetic epidemiology of colon cancer. Cancer 

Epidemiol Biomarkers Prev 2007;16:2331-43. 

25. Newcomb PA, Zheng Y, Chia VM, et al. Estrogen plus progestin use, microsatellite 

instability, and the risk of colorectal cancer in women. Cancer Res 2007;67:7534-9. 

26. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on 

Microsatellite Instability for cancer detection and familial predisposition: development of 

international criteria for the determination of microsatellite instability in colorectal cancer. 

Cancer Res 1998;58:5248-57. 

27. Lindor NM, Burgart LJ, Leontovich O, et al. Immunohistochemistry versus microsatellite 

instability testing in phenotyping colorectal tumors. J Clin Oncol 2002;20:1043-1048. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 
 

28. Shia J. Immunohistochemistry versus microsatellite instability testing for screening 

colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer 

syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 2008;10:293-300. 

29. Buchanan DD, Sweet K, Drini M, et al. Risk factors for colorectal cancer in patients with 

multiple serrated polyps: a cross-sectional case series from genetics clinics. PLoS One 

2010;5:e11636. 

30. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. 

Nature 2002;417:949-54. 

31. Alsop K, Mead L, Smith LD, et al. Low somatic K-ras mutation frequency in colorectal 

cancer diagnosed under the age of 45 years. Eur J Cancer 2006;42:1357-61. 

32. The Cancer Genome Atlas. cBioPortal for Cancer Genomics. 

http://www.cbioportal.org/public-portal/index.do. Computational Biology Center, 

Memorial Sloan-Kettering Cancer Center, 2013. 

33. Imamura Y, Lochhead P, Yamauchi M, Kuchiba A, Qian ZR, Liao X, Nishihara R, 

Jung S, Wu K, Nosho K, Wang YE, Peng S, Bass AJ, Haigis KM, Meyerhardt J, Chan 

AT, Fuchs CS, Ogino S. Analyses of clinicopathological, molecular, and prognostic 

associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort 

study and literature review. Mol Cancer 2014;13:135. 

34. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype 

underlies sporadic microsatellite instability and is tightly associated with BRAF mutation 

in colorectal cancer. Nat Genet 2006;38:787-93. 

35. Ogino S, Cantor M, Kawasaki T, et al. CpG island methylator phenotype (CIMP) of 

colorectal cancer is best characterised by quantitative DNA methylation analysis and 

prospective cohort studies. Gut 2006;55:1000-6. 

36. Hinoue T, Weisenberger DJ, Lange CP, et al. Genome-scale analysis of aberrant DNA 

methylation in colorectal cancer. Genome Res 2012;22:271-82. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 
 

37. van der Heijden GJMG, Donders ART, Stijnen T, et al. Imputation of missing values is 

superior to complete case analysis and the missing-indicator method in multivariable 

diagnostic research: A clinical example. J Clin Epidemiol 2006;59:1102-9. 

38. Azur MJ, Stuart EA, Frangakis C, et al. Multiple imputation by chained equations: what is 

it and how does it work? Int J Methods Psychiatr Res 2011;20:40-9. 

39. World Health Organization. International Classification of Diseases. Geneva: WHO, 

2007. 

40. Therneau TM, Grambsch PM. Modeling survival data: extending the Cox model. New 

York: Springer, 2000. 

41. Farcomeni A. A review of modern multiple hypothesis testing, with particular attention to 

the false discovery proportion. Stat Methods Med Res 2008;17:347-88. 

42. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and 

colorectal cancer prognosis. J Clin Oncol 2005;23:609-18. 

43. Lochhead P, Kuchiba A, Imamura Y, et al. Microsatellite Instability and BRAF Mutation 

Testing in Colorectal Cancer Prognostication. J Natl Cancer Inst 2013;105:1151-1156. 

44. Ward RL, Cheong K, Ku SL, et al. Adverse prognostic effect of methylation in colorectal 

cancer is reversed by microsatellite instability. J Clin Oncol 2003;21:3729-36. 

45. Sanchez JA, Krumroy L, Plummer S, et al. Genetic and epigenetic classifications define 

clinical phenotypes and determine patient outcomes in colorectal cancer. Br J Surg 

2009;96:1196-204. 

46. Bertagnolli MM, Niedzwiecki D, Compton CC, et al. Microsatellite instability predicts 

improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in 

stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol 

2009;27:1814-21. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 
 

47. Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive 

marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin 

Oncol 2010;28:3219-26. 

48. Jover R, Nguyen TP, Perez-Carbonell L, et al. 5-Fluorouracil adjuvant chemotherapy 

does not increase survival in patients with CpG island methylator phenotype colorectal 

cancer. Gastroenterology 2011;140:1174-81. 

49. Lin AY, Buckley NS, Lu AT, et al. Effect of KRAS mutational status in advanced 

colorectal cancer on the outcomes of anti-epidermal growth factor receptor monoclonal 

antibody therapy: a systematic review and meta-analysis. Clin Colorectal Cancer 

2011;10:63-9. 

50. Bokemeyer C, van Cutsem E, Rougier P, et al. Addition of cetuximab to chemotherapy 

as first-line treatment for KRAS wild-type metastatic colorectal cancer: Pooled analysis 

of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012;48:1466-75. 

51. Surveillance Epidemiology and End Results (SEER) Program (www.seer.cancer.gov) 

SEER*Stat Database. Incidence - SEER 13 Regs Research Data, Nov 2011 Sub, 

Vintage 2009 Pops (1992-2009) <Katrina/Rita Population Adjustment> - Linked To 

County Attributes - Total U.S., 1969-2010 Counties. In: National Cancer Institute D, 

Surveillance Research Program, Cancer Statistics Branch, ed, released April 2012, 

based on the November 2011 submission. 

 

*Author names in bold designate shared co-first authorship. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 1. Demographic and clinical characteristics by colorectal cancer (CRC) case group* 

 Type 1 
MSI-high, BRAF-
mutated, KRAS-

mutation negative, 
CIMP-positive 

Type 2  
MSS/MSI-low, BRAF-

mutated, KRAS-
mutation negative, 

CIMP-positive 

Type 3  
MSS/MSI-low, 
BRAF-mutation 
negative, KRAS-

mutated, non-CIMP 

Type 4  
MSS/MSI-low, 

BRAF- & KRAS-
mutation negative, 

non-CIMP 

Type 5  
MSI-high, BRAF- 
& KRAS-mutation 

negative, non-
CIMP 

Other  Unknown † Χ
2 

p- 
value  

 (N=100, 7%) (N=55, 4%) (N=353, 26%) (N=631, 47%) (N=50, 4%) (N=155, 12%) (N=706) 
Age at diagnosis          

  Mean (SD) 67.3  (5.3) 63.6  (8.4) 61.4  (9.0) 60.1  (9.8) 56.0  (12.2) 60.7  (10.9) 52.4  (12.1)  
  <40 0 (0) 1 (2) 5  (1) 22  (3) 5 (10) 8  (5) 87  (12) <0.01 
  40-49 1 (1) 2 (4) 37  (10) 59  (9) 10  (20) 13  (8) 292  (41)  
  50-59 7 (7) 11  (20) 93  (26) 201  (32) 15  (30) 39  (25) 102  (14)  
  60-69 51  (51) 27  (49) 140  (40) 222  (35) 10  (20) 58  (37) 137  (19)  
  ≥70 41  (41) 14  (25) 78  (22) 127  (20) 10  (20) 37  (24) 88  (12)  

Sex         
  Male 17  (17) 16  (29) 149  (42) 333  (53) 21  (42) 71  (46) 318  (45) <0.01 
  Female 83  (83) 39  (71) 204  (58) 298  (47) 29  (58) 84  (54) 388  (55)  

Race         
  White 95  (95) 52  (95) 318  (90) 575  (91) 43  (86) 145  (94) 471  (67) 0.05 
  African-American 2 (2) 3 (5) 9  (3) 27  (4) 3 (6) 1 (1) 19  (3)  
  Asian 2 (2) 0 (0) 16  (5) 11  (2) 2 (4) 3 (2) 18  (3)  
  >1 race 1 (1) 0 (0) 6  (2) 2  (0.3) 0 (0) 2  (1) 9 (1)  
  Other / Unknown 0 (0) 0 (0) 4  (1) 16  (3) 2 (4) 4 (3) 189  (27)  

CRC family history         
  No 85  (85) 47  (85) 295  (84) 538  (85) 33  (66) 128  (83) 596  (84) 0.02 
  Yes 15  (15) 8  (15) 58  (16) 93  (15) 17  (34) 27  (17) 110  (16)  

Stage at diagnosis         
  I 47  (47) 11  (20) 132  (38) 281  (45) 25  (50) 60  (39) 257 (37) <0.01 
  II-III 52  (52) 37  (67) 174  (49) 282  (45) 24  (48) 85  (55) 338 (48)  
  IV 1 (1) 7  (13) 46  (13) 66  (10) 1 (2) 10 (6) 107  (15)  
  Unknown 0  0  1  2  0  0  4   

1st treatment course         
  Received chemo 44  (46) 37  (71) 203  (59) 344  (67) 24  (50) 88  (59) 435  (63) 0.05 
  No chemo 52  (54) 15  (29) 142  (41) 271  (33) 24  (50) 62  (41) 256  (37)  
  Unknown 4  3  8  16  2  5  15   
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Table 1, cont. 
 Type 1 

MSI-high, BRAF-
mutated, KRAS-

mutation negative, 
CIMP-positive 

Type 2  
MSS/MSI-low, BRAF-

mutated, KRAS-
mutation negative, 

CIMP-positive 

Type 3  
MSS/MSI-low, 
BRAF-mutation 
negative, KRAS-

mutated, non-CIMP 

Type 4  
MSS/MSI-low, 

BRAF- & KRAS-
mutation negative, 

non-CIMP 

Type 5  
MSI-high, BRAF- 
& KRAS-mutation 

negative, non-
CIMP 

Other  Unknown † Χ
2 

p- 
value  

 (N=100, 7%) (N=55, 4%) (N=353, 26%) (N=631, 47%) (N=50, 4%) (N=155, 12%) (N=706) 
Tumor site          

  Right colon: 93  (93) 43 (80) 136 (39) 132  (22) 42  (84) 111  (73) 250  (36) <0.01 
   Cecum 36  17  72  54  20  38  81   
   Ascending colon 33  17  33  30  11  37  82   
   Hepatic flexure 11  2  9  10  3  11  25   
   Transverse colon 11  6  19  31  8  19  41   
   Splenic flexure 2  1  3  13  0  6  21   
  Left colon: 6 (6) 9 (17) 102  (29) 218  (35) 4 (8) 18  (12) 187  (27)  
   Descending colon 2  0  19  22  0  7  26   
   Sigmoid colon 4  9  83  196  4  11  161   
  Rectal: 1 (1) 2 (4) 112  (32) 268  (43) 4 (8) 24  (16) 258  (37)  
   Rectosigmoid Junction 1  1  28  67  2  8  61   
   Rectum 0  1  84  201  2  16  197   
  Unknown 0  0  3  7  0  2  2   

MSI status          
  MSS/MSI-L 0  (0) 55  (100) 353  (100) 631  (100) 0 (0) 84  (54) 535  (86) -- 
  MSI-H 100  (100) 0 (0) 0  (0)  0 (0) 50  (100) 71  (46) 85  (14)  
  Missing 0  0  0  0  0  0  86   

BRAF-mutation status          
  Wildtype 0 (0) 0 (0) 353  (100) 631  (100) 50  (100) 118  (76) 533  (92) -- 
  Mutated 100  (100) 55  (100) 0  (0) 0 (0) 0 (0) 37  (24) 51  (8)  
  Missing 0  0  0  0  0  0  102   

KRAS-mutation status          
  Wildtype 100  (100) 55  (100) 0 (0) 631  (100) 50  (100) 75  (48) 396  (72) -- 
  Mutated 0 (0) 0 (0) 353  (100) 0 (0) 0  (0) 80  (52) 154  (28)  
  Missing 0  0  0  0  0  0  156   

CIMP status          
  Non-CIMP 0 (0) 0 (0) 353  (100) 631  (100) 50  (100) 71  (46) 127  (77) -- 
  CIMP-positive 100  (100) 55  (100) 0 (0) 0 (0) 0  (0) 84  (54) 37  (23)  
  Missing 0  0  0  0  0  0  542   
5-yr survival (%)          

  Overall 80.5  46.2  67.8  78.0  84.1  71.8  75.3   
  Disease-specific 89.5  49.2  72.4  82.5  93.1  79.7  78.7   
*Cases missing data on all 4 markers used in subtype classification are excluded from all analyses (N=616).   
†Cases of “unknown” subtype have missing data on 1 to 3 markers used in subtype classification and are re-allocated to subtype groups through multiple imputation in analyses. 
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Table 2. Colorectal cancer (CRC)-specific and overall mortality by tumor subtype 

Subtype* 

Raw N 
Case 

Participants  
(col%) † 

Raw N 
CRC-Specific 

Deaths 
(col%) † 

CRC-Specific Mortality 
Raw N 

Total Deaths  
(col%) † 

Overall Mortality 

HR‡ (95% CI) HR§ (95% CI) HR‡ (95% CI) HR§ (95% CI) 
Primary Analysis¶               
 Type 1 100 (5) 9 (2) 0.41 (0.22-0.75) 0.54 (0.29-0.99) 42 (5) 0.88 (0.65-1.20) 1.05 (0.78-1.44) 
 Type 2 55 (3) 26 (4) 2.20 (1.47-3.31) 1.84 (1.21-2.78) 32 (3) 1.55 (1.08-2.22) 1.40 (0.98-2.01) 
 Type 3 353 (26) 112 (30) 1.32 (1.07-1.63) 1.25 (1.01-1.54) 173 (28) 1.26 (1.07-1.49) 1.23 (1.04-1.46) 
 Type 4 631 (49) 154 (52) 1.0 (ref) 1.0 (ref) 263 (49) 1.0 (ref) 1.0 (ref) 
 Type 5 50 (5) 4 (1) 0.30 (0.14-0.66) 0.42 (0.19-0.93) 14 (3) 0.61 (0.39-0.96) 0.74 (0.47-1.17) 
 Other 155 (12) 36 (11) 1.05 (0.76-1.44) 1.18 (0.87-1.62) 74 (13) 1.14 (0.90-1.43) 1.25 (0.99-1.57) 

Complete-Case Analyses** 

 

 

           

 Type 1 100 (5) 9 (2) 0.43 (0.22-0.85) 0.56 (0.28-1.11) 42 (5) 0.94 (0.67-1.32) 1.12 (0.80-1.58) 
 Type 2 55 (3) 26 (4) 2.72 (1.78-4.17) 2.40 (1.56-3.70) 32 (3) 1.79 (1.23-2.59) 1.65 (1.14-2.41) 
 Type 3 353 (26) 112 (30) 1.54 (1.20-1.97) 1.44 (1.12-1.83) 173 (28) 1.40 (1.15-1.68) 1.36 (1.12-1.65) 
 Type 4 631 (49) 154 (52) 1.0 (ref) 1.0 (ref) 263 (49) 1.0  (ref) 1.0  (ref) 
 Type 5 50 (5) 4 (1) 0.31 (0.12-0.85) 0.46 (0.17-1.26) 14 (3) 0.70 (0.41-1.20) 0.84 (0.49-1.45) 
 Other 155 (12) 36 (11) 1.02 (0.71-1.47) 1.27 (0.87-1.84) 74 (13) 1.21 (0.94-1.57) 1.38 (1.06-1.79) 
* Subtype classifications abbreviated as follows: Type 1 = MSI-high, BRAF-mutated, KRAS-mutation negative, CIMP-positive; Type 2 = MSS/MSI-low, BRAF-mutated, KRAS-mutation negative, CIMP-
positive; Type 3 = MSS/MSI-low, BRAF-mutation negative, KRAS-mutated, non-CIMP; Type 4 = MSS/MSI-low, BRAF-mutation negative, KRAS-mutation negative, non-CIMP; Type 5 = MSI-high, BRAF-
mutation negative, KRAS-mutation negative, non-CIMP 
† Case counts and numbers of deaths by subtype are based on observed, non-imputed data. Column percents reflect imputed distributions.  
‡ Adjusted for age at diagnosis, sex, BMI, diagnosis year, and smoking history. 
§ Adjusted for stage at diagnosis is addition to age at diagnosis, sex, BMI, diagnosis year, and smoking history. 
¶ Multiple imputation-based analysis in which missing tumor marker data was inferred based on known variables and then used to derive tumor subtype.  
** Complete-case analysis. Cases missing data on any tumor markers are excluded.  
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Supplemental Table 1.  Composition and design of included studies 

 SCCFR – Phase I  PMH-SCCFR SCCFR – Phase II  TOTAL 
Years of diagnosis 1998-2002 1998-2002 2002-2007 1998-2007 
Geographic area within 
Western Washington State 

3 counties  
(King, Pierce, Snohomish) 

10 counties (excluding 
King, Pierce, Snohomish) 

13 counties 13 counties 

Age at diagnosis (years):     
  <40 79 0 121 200 
  40-49 218 0 417 635 
  50-59 487 104 0 591 
  60-69 629 144 0 733 
  ≥70 362 105 0 467 
% Female 45% 100% 50% 53% 
N cases eligible 2359 439 727 3525 
N cases completed interview 1813 353 540 2706 
N cases with tumor tissue 1498 278 304 2080 
Mean time from diagnosis to 
interview (months) 

8.3 8.6 10.0 8.6 

*SCCFR = Seattle Colon Cancer Family Registry; PMH-SCCFR = Postmenopausal Hormones Supplemental Study to the Seattle Colon Cancer 
Family Registry 
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