25 research outputs found

    Initial Characterization of the FlgE Hook High Molecular Weight Complex of

    Get PDF
    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility

    Killing of Treponema denticola by Mouse Peritoneal Macrophages

    Get PDF
    Treponema denticola has been identified as an important cause of periodontal disease and hypothesized to be involved in extra-oral infections. The objective of this study was to investigate the role of T. denticola cell length and motility during mouse peritoneal macrophages in vitro uptake. Macrophages, incubated under aerobic and anaerobic conditions, produced a similar amount of TNF-α when stimulated with Escherichia coli LPS. The uptake of FlgE- and CfpA-deficient mutants of T. denticola was significantly increased compared with the wild-type strain, due to cell size or lack of motility. Opsonization with specific antibodies considerably improved the treponemes’ uptake. These results suggest that macrophages, in addition to other phagocytes, could play an important role in the control of T. denticola infection, and that the raising of specific antibodies could improve the efficacy of the immune response toward T. denticola, either at an oral site or during dissemination

    Skin histology and its role in heat dissipation in three pinniped species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat.</p> <p>Methods</p> <p>Thorough evaluation of the skin histology in three pinniped species; the California sea lion-<it>Zalophus californianus</it>, the Pacific harbor seal-<it>Phoca vitulina richardsi</it>, and the Northern elephant seal-<it>Mirounga angustirostris</it>, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA). Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin.</p> <p>Results</p> <p>The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seal<it>s</it>) follows a different pattern than skin in otariids (California sea lions). The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather.</p> <p>Conclusion</p> <p>Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits.</p
    corecore