335 research outputs found

    Fabrication and structural analysis of ZnO coated fiber optic phase modulators

    Get PDF
    Fiber optic modulators were fabricated by coating optical fibers with electrode and piezoelectric ZnO layers. The techniques of piezoelectric fiber optic modulator (PFOM) fabrication are presented, and the microstructure and crystallographic texture of the coatings are analyzed. In order to produce thick (approximately 5 μm) ZnO coatings, it was necessary to study the reactive dc magnetron sputtering process in O2/Ar gas mixtures under conditions close to the transition between an oxidized and nonoxidized Zn target surface. In situ quartz crystal microbalance measurements of the deposition rate revealed thee distinct regions in the deposition rate (R) vs oxygen partial pressure behavior, at constant total pressure, for sputtering under conditions that provided an oxidized Zn target surface. Additionally, a transition between oxygen and argon dominated sputtering as observed by varying the sputtering pressure while maintaining a constant The transition between oxygen and argon dominated sputtering influences R to varying extents within the three R vs regions for an oxidized target surface. Correlations among the cathode current and voltage, deposition rate, and gas flow rate are presented to give a better understanding of the reactive sputtering processes occurring at the oxidized Zn target surface. Sputtering conditions optimized for a high ZnO deposition rate were used to produce 〈001〉 radially oriented ZnO fiber coatings for PFOM devices that can produce optical phase shifts as large as 0.38 rad/

    Socioeconomic factors influencing access to drugs from the Specialized Component of Pharmaceutical Services in Paraná-Brazil: An observational, cross-sectional retrospective study

    Get PDF
    The Specialized Component of Pharmaceutical Services (CEAF) is a crucial strategy for accessing medicines through the Brazilian Public Health System, holding the highest budgetary impact on outpatient pharmaceutical care. This study aimed to assess the association of socioeconomic factors with access to CEAF drugs in municipalities throughout Paran & aacute; from 2010 to 2019. It utilized a retrospective, observational, cross-sectional approach, evaluating dispensed medication units, medication expenditure, and average unit cost. Analyses were performed to identify a correlation between the use of CEAF drugs and socioeconomic indicators. In these 10 years, the number of dispensed units practically quadrupled, and the expenditure on these drugs doubled, from BRL 214 million to BRL 476 million. The Index of Paran & aacute; Institute for Economic and Social Development of Municipal Performance (IPDM) showed a greater association with the use of CEAF drugs, and no correlation was observed between gross domestic product (GDP) per capita and the municipal population. Overall, the IPDM index that includes income, education, and health are socioeconomic factors that influence the utilization of CEAF drugs. These findings emphasize the need for health education among users and adjustment of public policies to mitigate inequalities in the CEAF drug access for the citizens of Paran & aacute;

    Fabrication and structural analysis of ZnO coated fiber optic phase modulators

    Get PDF
    Fiber optic modulators were fabricated by coating optical fibers with electrode and piezoelectric ZnO layers. The techniques of piezoelectric fiber optic modulator (PFOM) fabrication are presented, and the microstructure and crystallographic texture of the coatings are analyzed, Ln order to produce thick (approximately 5 mu m) ZnO coatings, it was necessary to study the reactive de magnetron sputtering process in O-2/Ar gas mixtures under conditions close to the transition between an oxidized and nonoxidized Zn target surface. In situ quartz crystal microbalance measurements of the deposition rate revealed thee distinct regions in the deposition rate (R) vs oxygen partial pressure (P-o2) behavior, at constant total pressure, for sputtering under conditions that provided an oxidized Zn target surface. Additionally, a transition between oxygen and argon dominated sputtering as observed by varying the sputtering pressure while maintaining a constant P-o2. The transition between oxygen and argon dominated sputtering influences R to varying extents within the three R vs P-o2 regions for an oxidized target surface. Correlations among the cathode current and voltage, deposition rate, and gas flow rate are presented to give a better understanding of the reactive sputtering processes occurring at the oxidized Zn target surface. Sputtering conditions optimized for a high ZnO deposition rate were used to produce [001] radially oriented ZnO fiber coatings for PFOM devices that can produce optical phase shifts as large as 0.38 rad/V

    Photoelasticity of crystalline and amorphous silica from first principles

    Full text link
    Based on density-functional perturbation theory we have computed from first principles the photoelastic tensor of few crystalline phases of silica at normal conditions and high pressure (quartz, α\alpha-cristobalite, β\beta-cristobalite) and of models of amorphous silica (containig up to 162 atoms), obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The computational framework has also been checked on the photoelastic tensor of crystalline silicon and MgO as prototypes of covalent and ionic systems. The agreement with available experimental data is good. A phenomenological model suitable to describe the photoelastic properties of different silica polymorphs is devised by fitting on the ab-initio data.Comment: ten figure

    YBa2Cu3O7 and Nb NanoSQUIDs for the Investigation of Magnetization Reversal of Individual Magnetic Nanoparticles

    Get PDF
    We report on the fabrication, performance and application of sensitive YBa2Cu3O7 (YBCO) and Nb nanoSQUIDs to magnetization reversal measurements of individual magnetic nanoparticles. The YBCO SQUIDs are based on grain boundary Josephson junctions and are patterned in a single layer of epitaxially grown YBCO films by Ga focused ion beam milling. The Nb SQUIDs contain sandwich-type Josephson junctions with normal conducting HfTi barriers; they are fabricated with a multilayer technology that includes patterning by e-beam lithography and a combination of milling techniques and chemical-mechanical polishing. Due to the small inductance of the SQUID loops, ultralow white flux noise at 4.2 K can be achieved, which yields spin sensitivities of down to a few Bohr magnetons per unit bandwidth for a magnetic nanoparticle placed at 10 nm distance to the SQUID loop

    Predator Dispersal Determines the Effect of Connectivity on Prey Diversity

    Get PDF
    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation

    First results from stimulation assessment and monitoring of the 426°C geothermal well RN-15/IDDP-2 (H2020-DEEPEGS project)

    Get PDF
    The RN-15/IDDP-2 deep geothermal well of the DEEPEGS EU project on the Mid-Atlantic ridge at Reykjanes, Iceland, is a unique site for geothermal research. With a bottom hole temperature of approximately 426°C, it is one of the hottest geothermal wells ever drilled aiming for fluids at supercritical condition. Consequently, down-hole measurements are reliable to a depth of about 3.5 km, only. Pressure and temperature condition in the reservoir can be inferred using the newly developed wellbore simulator WellboreKit. Due to complete fluid loss, the well has been drilled at flow rates that reach hydraulic stimulation condition. After the drilling, the well was stimulated further by applying different concepts ranging from high flow rate hydraulic stimulation to long-term but low flow rate hydraulic stimulation to increase the reservoir performance at around 4.6 km depth. Thermo-hydro-mechanically coupled numerical modelling was performed to predict the performance response and thus, develop a well stimulation schedule. Processes related to drilling and stimulation are monitored using seismic and magnetotelluric methods to characterize and understand the processes ongoing during injection
    • …
    corecore