939 research outputs found

    Nematodes Affecting Soybean and Sustainable Practices for Their Management

    Get PDF
    Plant‐parasitic nematodes are one of the limiting factors for soybean production worldwide. Overall, plant‐parasitic nematodes alone cause an estimated annual crop loss of $78 billion worldwide and an average crop yield loss of 10–15%. This imposes a challenge to sustainable production of food worldwide, since there has been increasing demand for food supply and food security. Unsustainable cropping production systems with monocultures, intensive use of soils and expansion of crops to newly opened areas have intensified problems associated with new pests and diseases. Thus, finding and applying sustainable methods to control diseases associated with soybean are in current need. Over hundred nematode species, comprising fifty genera, have been reported in association with soybean. Of these, the root‐knot nematode Meloidogyne spp., cyst nematode Heterodera glycines, lesion nematode Pratylenchus brachyurus and the reniform nematode Rotylenchulus reniformis are major nematode species limiting soybean production. Here, we report an up‐to‐date literature review on the biology, symptoms, damage and control methods used for these nematodes species. Additionally, unusual and emergent nematode species affecting soybean are discussed

    Applications Residual Control Charts Based on Variable Limits

    Get PDF
    The main purpose of this paper is to verify the stability of a productive process in the presence of the effects of autocorrelation and volatility, in order to capture these characteristics by a joint forecast model which produces residuals that are evaluated by a control chart based on variable control limits. The methodology employed will be the joint estimation of the residuals by ARIMA – ARCH models and the conditional standard deviation from residuals to establish the chart control limits. The joint AR (1)-ARCH (1) model shows that an appropriate forecasting model brings a great contribution to the performance of residual control charts in monitoring the stability of industrial variables using just one chart to monitor mean and variance together.info:eu-repo/semantics/publishedVersio

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) 1ω0.55-1 \leq \omega \leq -0.55 and Ωm=0.320.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval 1ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=1.290.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.310.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe

    Vasodilators in Septic Shock Resuscitation: A Clinical Perspective

    Get PDF
    ABSTRACT: Microcirculatory abnormalities have been shown to be frequent in patients with septic shock despite “normalization” of systemic hemodynamics. Several studies have explored the impact of vasodilator therapy (prostacyclin, inhaled nitric oxide, topic acetylcholine and nitroglycerin) on microcirculation and tissue perfusion, with contradictory findings.In this narrative review, we briefly present the pathophysiological aspects of microcirculatory dysfunction, and depict the evidence supporting the use of vasodilators and other therapeutic interventions (fluid administration, blood transfusion, vasopressors and dobutamine) aiming to improve the microcirculatory flow in septic shock patients

    Limits on decaying dark energy density models from the CMB temperature-redshift relation

    Full text link
    The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (J. Lima, Phys. Rev. D 54, 2571 (1996)). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the CMB which depends on the effective equation of state weffw_{eff} and on the "adiabatic index" γ\gamma. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev-Zel'dovich observations and at higher redshift from quasar absorption line spectra, we find weff=0.97±0.034w_{eff}=-0.97 \pm 0.034, adopting for the adiabatic index γ=4/3\gamma=4/3, in good agreement with current estimates and still compatible with weff=1w_{eff}=-1, implying that the dark energy content being constant in time.Comment: 8 pages, 1 figur

    Cosmological models with linearly varying deceleration parameter

    Full text link
    We propose a new law for the deceleration parameter that varies linearly with time and covers Berman's law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in International Journal of Theoretical Physic

    Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1,4-naphthoquinone derivatives

    Full text link
    Pterocarpanquinones 8a-c, previously synthesized in our laboratory, and an homologous series of derivatives, compounds 9a-c prepared in this work, were evaluated on breast cancer cells (MCF-7) and on the parasites Leishmania amazonensis and Plasmodium falciparum, in culture. Compounds 8a-c were more potent than 9a-c on tumor cells and Leishmania amazonensis. On the other hand, 9a-c showed to be more active on Plasmodium falciparum. All the compounds studied were bioselective, presenting negligible cytotoxicity against fresh murine lymphocytes and human lymphocytes activated by the mitogen phytohemaglutinin (PHA)

    Particle-Like Description in Quintessential Cosmology

    Full text link
    Assuming equation of state for quintessential matter: p=w(z)ρp=w(z)\rho, we analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown that its dynamics is formally equivalent to that of a classical particle under the action of 1D potential V(a)V(a). It is shown that Hamiltonian method can be easily implemented to obtain a classification of all cosmological solutions in the phase space as well as in the configurational space. Examples taken from modern cosmology illustrate the effectiveness of the presented approach. Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis of acceleration and horizon problems, are presented. The inverse problem of reconstructing the Hamiltonian dynamics (i.e. potential function) from the luminosity distance function dL(z)d_{L}(z) for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to investigation of quintessence models were adde

    Cosmic coincidence problem and variable constants of physics

    Full text link
    The standard model of cosmology is investigated using time dependent cosmological constant Λ\Lambda and Newton's gravitational constant GG. The total energy content is described by the modified Chaplygin gas equation of state. It is found that the time dependent constants coupled with the modified Chaplygin gas interpolate between the earlier matter to the later dark energy dominated phase of the universe. We also achieve a convergence of parameter ω1\omega\to-1, with minute fluctuations, showing an evolving ω\omega. Thus our model fairly alleviates the cosmic coincidence problem which demands ω=1\omega=-1 at present time.Comment: 27 pages, 15 figure
    corecore