1,011 research outputs found
Constraining the dark energy with galaxy clusters X-ray data
The equation of state characterizing the dark energy component is constrained
by combining Chandra observations of the X-ray luminosity of galaxy clusters
with independent measurements of the baryonic matter density and the latest
measurements of the Hubble parameter as given by the HST key project. By
assuming a spatially flat scenario driven by a "quintessence" component with an
equation of state we place the following limits on the
cosmological parameters and : (i) and (1) if the
equation of state of the dark energy is restricted to the interval (\emph{usual} quintessence) and (ii) and
() if violates the null energy condition and assume values (\emph{extended} quintessence or ``phantom'' energy). These results are in
good agreement with independent studies based on supernovae observations,
large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe
Vasodilators in Septic Shock Resuscitation: A Clinical Perspective
ABSTRACT: Microcirculatory abnormalities have been shown to be frequent in patients with septic shock despite “normalization” of systemic hemodynamics. Several studies have explored the impact of vasodilator therapy (prostacyclin, inhaled nitric oxide, topic acetylcholine and nitroglycerin) on microcirculation and tissue perfusion, with contradictory findings.In this narrative review, we briefly present the pathophysiological aspects of microcirculatory dysfunction, and depict the evidence supporting the use of vasodilators and other therapeutic interventions (fluid administration, blood transfusion, vasopressors and dobutamine) aiming to improve the microcirculatory flow in septic shock patients
Limits on decaying dark energy density models from the CMB temperature-redshift relation
The nature of the dark energy is still a mystery and several models have been
proposed to explain it. Here we consider a phenomenological model for dark
energy decay into photons and particles as proposed by Lima (J. Lima, Phys.
Rev. D 54, 2571 (1996)). He studied the thermodynamic aspects of decaying dark
energy models in particular in the case of a continuous photon creation and/or
disruption. Following his approach, we derive a temperature redshift relation
for the CMB which depends on the effective equation of state and on
the "adiabatic index" . Comparing our relation with the data on the CMB
temperature as a function of the redshift obtained from Sunyaev-Zel'dovich
observations and at higher redshift from quasar absorption line spectra, we
find , adopting for the adiabatic index ,
in good agreement with current estimates and still compatible with
, implying that the dark energy content being constant in time.Comment: 8 pages, 1 figur
Cosmological models with linearly varying deceleration parameter
We propose a new law for the deceleration parameter that varies linearly with
time and covers Berman's law where it is constant. Our law not only allows one
to generalize many exact solutions that were obtained assuming constant
deceleration parameter, but also gives a better fit with data (from SNIa, BAO
and CMB), particularly concerning the late time behavior of the universe.
According to our law only the spatially closed and flat universes are allowed;
in both cases the cosmological fluid we obtain exhibits quintom like behavior
and the universe ends with a big-rip. This is a result consistent with recent
cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in
International Journal of Theoretical Physic
Particle-Like Description in Quintessential Cosmology
Assuming equation of state for quintessential matter: , we
analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown
that its dynamics is formally equivalent to that of a classical particle under
the action of 1D potential . It is shown that Hamiltonian method can be
easily implemented to obtain a classification of all cosmological solutions in
the phase space as well as in the configurational space. Examples taken from
modern cosmology illustrate the effectiveness of the presented approach.
Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis
of acceleration and horizon problems, are presented. The inverse problem of
reconstructing the Hamiltonian dynamics (i.e. potential function) from the
luminosity distance function for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to
investigation of quintessence models were adde
Cosmic coincidence problem and variable constants of physics
The standard model of cosmology is investigated using time dependent
cosmological constant and Newton's gravitational constant . The
total energy content is described by the modified Chaplygin gas equation of
state. It is found that the time dependent constants coupled with the modified
Chaplygin gas interpolate between the earlier matter to the later dark energy
dominated phase of the universe. We also achieve a convergence of parameter
, with minute fluctuations, showing an evolving . Thus our
model fairly alleviates the cosmic coincidence problem which demands
at present time.Comment: 27 pages, 15 figure
Decomposition and nutrient release of leguminous plants in coffee agroforestry systems.
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and
Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and(lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants
Cosmological Dynamics of Phantom Field
We study the general features of the dynamics of the phantom field in the
cosmological context. In the case of inverse coshyperbolic potential, we
demonstrate that the phantom field can successfully drive the observed current
accelerated expansion of the universe with the equation of state parameter
. The de-Sitter universe turns out to be the late time attractor
of the model. The main features of the dynamics are independent of the initial
conditions and the parameters of the model. The model fits the supernova data
very well, allowing for at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear
in Physical Review
Screening, production and biochemical characterization of a new fibrinolytic enzyme produced by Streptomyces sp. (Streptomycetaceae) isolated from Amazonian lichens
Thrombosis is a pathophysiological disorder caused by accumulation of fibrin in the blood. Fibrinolytic proteases with potent thrombolytic activity have been produced by diverse microbial sources. Considering the microbial biodiversity of the Amazon region, this study aimed at the screening, production and biochemical characterization of a fibrinolytic enzyme produced by Streptomyces sp. isolated from Amazonian lichens. The strain Streptomyces DPUA1576 showed the highest fibrinolytic activity, which was 283 mm2. Three variables at two levels were used to assess their effects on the fibrinolytic production. The parameters studied were agitation (0.28 - 1.12 g), temperature (28 - 36 ºC) and pH (6.0 - 8.0); all of them had significant effects on the fibrinolytic production. The maximum fibrinolytic activity (304 mm2) was observed at 1.12 g, 28 ºC, and pH of 8.0. The crude extract of the fermentation broth was used to assess the biochemical properties of the enzyme. Protease and fibrinolytic activities were stable during 6 h, at a pH ranging from 6.8 to 8.4 and 5.8 to 9.2, respectively. Optimum temperature for protease activity ranged between 35 and 55 °C, while the highest fibrinolytic activity was observed at 45 ºC. Proteolytic activity was inhibited by Cu2+ and Co2+ ions, phenylmethylsulfonyl fluoride (PMSF) and pepstatin A, which suggests that the enzyme is a serine protease. Enzymatic extract cleaved fibrinogen at the subunits A-chain, A-chain, and -chain. The results indicated that Streptomyces sp. DPUA 1576 produces enzymes with fibrinolytic and fibrinogenolytic activity, enzymes with an important application in the pharmaceutical industry.The authors grateful acknowledge the financial support of Fundação de Amparo a Pesquisa do Estado de Pernambuco (FACEPE, Pernambuco, Brazil, N. 0158-2.12/11), CNPq/ RENORBIO (National Counsel of Technological and Scientific Development, N.55146/2010-3) and National Council for the Improvement of Higher Education (CAPES, Brazil) for the scholarship. The author thanks editor and reviewers for their review and comments.info:eu-repo/semantics/publishedVersio
- …
