635 research outputs found

    The Roosevelt – Rondon expedition marmoset (Mico marcai) : unveiling the conservation status of a data deficient species

    Get PDF
    The Roosevelt-Rondon Expedition marmoset, Mico marcai, was collected in 1914 and to date, all information on this species comes from three skins brought back by the Expedition and two additional skins collected in the 1990s. It is no surprise then that M.marcai has been classified as Data Deficient (DD). Given that Mico marcai’s suspected range sits on the path of the advancing Brazilian “Arc-of-Deforestation”, it is urgent that relevant data be collected to assess this taxon. Here we present the first comprehensive field data on the distribution, population size and threats on M. marcai with the goal of removing the species from the DD category. From 2012 to 2015, we surveyed for the species in 11 localities, in and around the Marmelos-Aripuanã interfluve, and estimated density using distance sampling on 10 transects. We also used spatial predictive modelling to project the amount of habitat that will be lost within its range in 18 years under different deforestation scenarios. We found marmosets in 14 localities and calculated its Extent of Occurrence to be 31,073 km2. We walked 271 km and detected 30 marmoset groups, allowing us to estimate their density to be 8.31 individuals/km2 and a total population of 258,217.71 individuals. By a “Business as usual” scenario, 20,181 km2 of habitat will be lost in three marmoset generations (~18 years), compromising 33% of the species’ range. Accordingly, M. marcai should be classified as globally Vulnerable under category A3c. Following our study, we propose the Amazonian marmosets, genus Mico, should undergo similar re-assessment as their ranges all fall in the path of the Arc-of-Deforestation. Keywords: Amazonian marmosets, Conservation Status, Data Deficient, Habitat Loss, Southern Amazoni

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Taxonomic review of Saguinus mystax (Spix, 1823) (Primates, Callitrichidae), and description of a new species

    Get PDF
    Although the Amazon has the greatest diversity of primates, there are still taxonomic uncertainties for many taxa, such as the species of the Saguinus mystax group. The most geographically broadly distributed and phenotypically diverse species in this group is S. mystax, and its phenotypic diversity has been recognized as three subspecies—S. mystax mystax, S. mystax pileatus and S. mystax pluto—with non-overlapping geographic distributions. In this sense, we carried out an extensive field survey in their distribution areas and used a framework of taxonomic hypothesis testing of genomic data combined with an integrative taxonomic decision-making framework to carry out a taxonomic revision of S. mystax. Our tests supported the existence of three lineages/species. The first species corresponds to Saguinus mystax mystax from the left bank of the JuruĂĄ River, which was raised to the species level, and we also discovered and described animals from the Juruá–TefĂ© interfluve previously attributed to S. mystax mystax as a new species. The subspecies S. m. pileatus and S. m. pluto are recognized as a single species, under a new nomenclatural combination. However, given their phenotypic distinction and allopatric distribution, they potentially are a manifestation of an early stage of speciation, and therefore we maintain their subspecific designations

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201
    • 

    corecore