1,448 research outputs found

    Modeling and Design Optimization of Multifunctional Membrane Reactors for Direct Methane Aromatization

    Get PDF
    Due to the recent increase of natural gas production in the U.S., utilizing natural gas for higher-value chemicals has become imperative. Direct methane aromatization (DMA) is a promising process used to convert methane to benzene, but it is limited by low conversion of methane and rapid catalyst deactivation by coking. Past work has shown that membrane separation of the hydrogen produced in the DMA reactions can dramatically increase the methane conversion by shifting the equilibrium toward the products, but it also increases coke production. Oxygen introduction into the system has been shown to inhibit this coke production while not inhibiting the benzene production. This paper introduces a novel mathematical model and design to employ both methods in a multifunctional membrane reactor to push the DMA process into further viability. Multifunctional membrane reactors, in this case, are reactors where two different separations occur using two differently selective membranes, on which no systems studies have been found. The proposed multifunctional membrane design incorporates a hydrogen-selective membrane on the outer wall of the reaction zone, and an inner tube filled with airflow surrounded by an oxygen-selective membrane in the middle of the reactor. The design is shown to increase conversion via hydrogen removal by around 100%, and decrease coke production via oxygen addition by 10% when compared to a tubular reactor without any membranes. Optimization studies are performed to determine the best reactor design based on methane conversion, along with coke and benzene production. The obtained optimal design considers a small reactor (length = 25 cm, diameter of reaction tube = 0.7 cm) to subvert coke production and consumption of the product benzene as well as a high permeance (0.01 mol/s·m2·atm1/4) through the hydrogen-permeable membrane. This modeling and design approach sets the stage for guiding further development of multifunctional membrane reactor models and designs for natural gas utilization and other chemical reaction systems

    Observational constraints on interacting quintessence models

    Full text link
    We determine the range of parameter space of Interacting Quintessence Models that best fits the recent WMAP measurements of Cosmic Microwave Background temperature anisotropies. We only consider cosmological models with zero spatial curvature. We show that if the quintessence scalar field decays into cold dark matter at a rate that brings the ratio of matter to dark energy constant at late times,the cosmological parameters required to fit the CMB data are: \Omega_x = 0.43 \pm 0.12, baryon fraction \Omega_b = 0.08 \pm 0.01, slope of the matter power spectrum at large scals n_s = 0.98 \pm 0.02 and Hubble constant H_0 = 56 \pm 4 km/s/Mpc. The data prefers a dark energy component with a dimensionless decay parameter c^2 =0.005 and non-interacting models are consistent with the data only at the 99% confidence level. Using the Bayesian Information Criteria we show that this exra parameter fits the data better than models with no interaction. The quintessence equation of state parameter is less constrained; i.e., the data set an upper limit w_x \leq -0.86 at the same level of significance. When the WMAP anisotropy data are combined with supernovae data, the density parameter of dark energy increases to \Omega_x \simeq 0.68 while c^2 augments to 6.3 \times 10^{-3}. Models with quintessence decaying into dark matter provide a clean explanation for the coincidence problem and are a viable cosmological model, compatible with observations of the CMB, with testable predictions. Accurate measurements of baryon fraction and/or of matter density independent of the CMB data, would support/disprove these models.Comment: 16 pages, Revtex4, 5 eps figures, to appear in Physical Review

    Development of Chemical Process Design and Control for Sustainability

    Get PDF
    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation for the optimization of process operations to minimize environmental impacts associated with products, materials and energy. The implemented control strategy combines a biologically-inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. EPA’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady states obtained through the implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose material and energy time variation models are characterized by multiple steady states and oscillatory conditions

    A Novel ARX-Based Approach for the Steady-State Identification Analysis of Industrial Depropanizer Column Datasets

    Get PDF
    This paper introduces a novel steady-state identification (SSI) method based on the auto-regressive model with exogenous inputs (ARX). This method allows the SSI with reduced tuning by analyzing the identifiability properties of the system. In particular, the singularity of the model matrices is used as an index for steady-state determination. In this contribution, the novel SSI method is compared to other available techniques, namely the F-like test, wavelet transform and a polynomial-based approach. These methods are implemented for SSI of three different case studies. In the first case, a simulated dataset is used for calibrating the output-based SSI methods. The second case corresponds to a literature nonlinear continuous stirred-tank reactor (CSTR) example running at different steady states in which the ARX-based approach is tuned with the available input-output data. Finally, an industrial case with real data of a depropanizer column from PETROBRAS S.A. considering different pieces of equipment is analyzed. The results for a reflux drum case indicate that the wavelet and the F-like test can satisfactorily detect the steady-state periods after careful tuning and when respecting their hypothesis, i.e., smooth data for the wavelet method and the presence of variance in the data for the F-like test. Through a heat exchanger case with different measurement frequencies, we demonstrate the advantages of using the ARX-based method over the other techniques, which include the aspect of online implementation

    Modeling and Optimization of High-Performance Polymer Membrane Reactor Systems for Water–Gas Shift Reaction Applications

    Get PDF
    In production of electricity from coal, integrated gasification combined cycle plants typically operate with conventional packed bed reactors for the water-gas shift reaction, and a Selexol process for carbon dioxide removal. Implementation of membrane reactors in place of these two process units provides advantages such as increased carbon monoxide conversion, facilitated CO2 removal/sequestration and process intensification. Proposed H2-selective membranes for these reactors are typically of palladium alloy or ceramic due to their outstanding gas separation properties; however, on an industrial scale, the cost of such materials may become exorbitant. High-performance polymeric membranes, such as polybenzimidazoles (PBIs), present themselves as low-cost alternatives with gas separation properties suitable for use in such membrane reactors, given their significant thermal and chemical stability. In this work, the performance of a class of high-performance polymeric membranes is assessed for use in integrated gasification combined cycle (IGCC) units operated with carbon capture, subject to constraints on equipment and process streams. Several systems are considered for use with the polymeric membranes, including membrane reactors and permeative stage reactors. Based upon models developed for each configuration, constrained optimization problems are formulated which seek to more efficiently employ membrane surface area. From the optimization results, the limiting membrane parameter for achieving all carbon capture and H2 production specifications for water–gas shift reactor applications is determined to be the selectivity, αH2{CO2 , and thus a minimum value of this parameter which satisfies all the constraints is identified for each analyzed configuration. For a CO2 capture value of 90%, this value is found to be α = 61 for the membrane reactor and the 3-stage permeative stage reactor and α = 62 for the 2-stage permeative stage reactor. The proposed systems approach has the potential to be employed to identify performance limitations associated with membrane materials to guide the development of future polymeric and other advanced materials with desired membrane characteristics for energy and environmental applications

    Phytochemicals Recovery from Grape Pomace: Extraction Improvement and Chemometric Study

    Get PDF
    In the last 20 years, an increased interest has been shown in the application of different types and combinations of enzymes to obtain phenolic extracts from grape pomace in order to maximize its valorization. Within this framework, the present study aims at improving the recovery of phenolic compounds from Merlot and Garganega pomace and at contributing to the scientific background of enzyme-assisted extraction. Five commercial cellulolytic enzymes were tested in different conditions. Phenolic compound extraction yields were analyzed via a Design of Experiments (DoE) methodology and a second extraction step with acetone was sequentially added. According to DoE, 2% w/w enzyme/substrate ratio was more effective than 1%, allowing a higher total phenol recovery, while the effect of incubation time (2 or 4 h) variation was more enzyme-dependent. Extracts were characterized via spectrophotometric and HPLC-DAD analyses. The results proved that enzymatic and acetone Merlot and Garganega pomace extracts were complex mixtures of compounds. The use of different cellulolytic enzymes led to different extract compositions, as demonstrated using PCA models. The enzyme effects were observed both in water enzymatic and in the subsequent acetone extracts, probably due to their specific grape cell wall degradation and leading to the recovery of different molecule arrays

    Nutritional diagnosis for eucalypt by DRIS, M-DRIS, and CND

    Get PDF
    A avaliação do estado nutricional em florestas de eucalipto (Eucalyptus grandis W. Hill ex Maid.), mediante análises de tecido vegetal, pode ser importante para elevação e manutenção em níveis elevados da produtividade florestal, pois, reflete os fluxos de água e de nutrientes no sistema, sendo ferramenta complementar à análise de solo. O presente trabalho foi realizado aplicando-se o Sistema Integrado de Diagnose e Recomendação (DRIS), DRIS modificado (M-DRIS) e Diagnose da Composição Nutricional (CND), com o objetivo de comparar as diagnoses realizadas entre os métodos DRIS, M-DRIS e CND para o eucalipto, em localidades da região Centro-Leste de Minas Gerais. Foram utilizados dados de produtividade e dos teores de N, P, K, Ca e Mg nas folhas, referentes a 993 talhões de Eucalyptus grandis com idades variando de 72 a 153 meses, plantados no espaçamento 3 ´ 2 m em seis localidades dessa região. A diagnose do estado nutricional foi realizada utilizando-se o DRIS, M-DRIS e CND e validada pelo teste do qui-quadrado (c²), aplicado àqueles nutrientes diagnosticados como limitantes primários por deficiência. Os métodos foram comparados, baseando-se na freqüência de diagnoses concordantes (DCF) do potencial de resposta à adubação (FRP), mediante os seguintes critérios: considerando-se os nutrientes separadamente; desde todos (5) nutrientes até nenhum (0); e apenas o limitante primário por deficiência e por excesso. O nível de concordância entre as diagnoses, fornecidas pelos métodos, variou de acordo com o procedimento adotado em sua avaliação e com o grau de concentração de nutrientes nas árvores.The evaluation of the nutritional status in eucalypt (Eucalyptus grandis W. Hill ex Maid.) forests through vegetal tissue analyses what reflects water and nutrient flows in the system, and represents a complementary tool to soil analysis can be helpful to raise and maintain the forest productivity at high levels. This study compared the use of the Diagnosis and Recommendation Integrated System (DRIS), Modified-DRIS (M-DRIS), and Compositional Nutrient Diagnosis (CND) diagnose methods in eucalypt stands in Central-Eastern Minas Gerais State, Brazil. Data of productivity and of N, P, K, Ca, and Mg leaf contents in 993 Eucalyptus grandis stands aging between 72 and 153 months, planted on six sites in 3 ´ 2 m spacing, were used. The nutritional status was diagnosed by the DRIS, M-DRIS, and CND methods, and validated by the chi-square (c²) test applied to the nutrients diagnosed as primary limiting by deficiency. These three methods were compared to each other based on the diagnosis concordance frequency (DCF) derived from the fertilization response potential (FRP) by the criteria considering each nutrient separately; from all (5) to none (0); and only the primary limiting nutrients by either deficiency or excess. The diagnosis concordance level among the methods was procedure-dependent, and varied according to the nutrient concentration in trees

    Robótica'2001 - Festival Nacional de Robótica

    Get PDF
    O ROBÓTICA’2001 – Festival Nacional de Robótica visa promover desenvolvimentos técnicos e científicos na área da Robótica Móvel e áreas afins (electrónica, mecânica, programação, visão por computador, inteligência artificial, navegação, controlo, etc) através de um problema motivador, a ser resolvido por diferentes grupos de investigadores e estudantes. Procura-se ainda difundir a Ciência e a Tecnologia junto do público em geral e dos jovens em particular, nomeadamente motivando estes últimos para a aprendizagem experimental da Ciência. O objectivo principal dos participantes no evento deverá ser pois aprender e partilhar a sua aprendizagem com os colegas, tendo em vista a evolução da Robótica. Este evento consistiu em três actividades paralelas: uma competição de robótica móvel (em duas modalidades), um encontro científico e ainda várias demonstrações de outros robôs móveis e/ou autónomos

    Weak antilocalization in quasi-two-dimensional electronic states of epitaxial LuSb thin films

    Get PDF
    Observation of large non-saturating magnetoresistance in rare-earth monopnictides has raised enormous interest in understanding the role of its electronic structure. Here, by a combination of molecular-beam epitaxy, low-temperature transport, angle-resolved photoemssion spectroscopy, and hybrid density functional theory we have unveiled the bandstructure of LuSb, where electron-hole compensation is identified as a mechanism responsible for large magnetoresistance in this topologically trivial compound. In contrast to bulk single crystal analogues, quasi-two-dimensional behavior is observed in our thin films for both electron and holelike carriers, indicative of dimensional confinement of the electronic states. Introduction of defects through growth parameter tuning results in the appearance of quantum interference effects at low temperatures, which has allowed us to identify the dominant inelastic scattering processes and elucidate the role of spin-orbit coupling. Our findings open up new possibilities of band structure engineering and control of transport properties in rare-earth monopnictides via epitaxial synthesis.Comment: 20 pages, 12 figures; includes supplementary informatio

    Mobile robot competitions: fostering advances in research, development and education in robotics

    Get PDF
    Mobile robot competitions are events well suited to experimentation, research and development in many areas concerned with science and technology, ranging from material science to artificial intelligence. Aware of this fact, and for several years now, some Portuguese Universities have been involving some of their Engineering and Computer Science students in such contests, namely those of international level. The performance has been improving both in terms of the results and prizes obtained and the increasingly elaborate technical solutions developed by the teams. The importance recognised in these events has led the authors to submit to the Portuguese Government a proposal for an annual Festival of this kind in Portugal. This paper points out the advances in research, technology and education, which result from this type of events
    • …
    corecore