76 research outputs found

    Electron-impact ionization cross sections of small molecules containing Fe and Cr *

    Get PDF
    J R acknowledges the PhD scholarship Grant PD/BD/142846/2018, and together with P L V, the Research Grants CEFITEC (UIDB/00068/2020) and PTDC/FISAQM/31281/2017 from the Portuguese National Funding Agency FCT. This work was also supported by the Radiation Biology and Biophysics Doctoral Training Programme (RaBBiT, PD/00193/2012); UCIBIO (UIDB/04378/2020). The work has partially been carried out within the framework of the EUROfusion Consortium and received funding from the Euratom research and training programme by Grant Agreement No. 101052200-EUROfusion. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The computational results have been obtained using the HPC infrastructure LEO of the University of Innsbruck.We present the electron-impact ionization cross sections(EICSs) of iron and chromium hydrides, nitrides, and oxides. The motivation of this work stems from the fact that chemical sputtering from a steel surface exposed to a hot plasma can create these molecules which in turn influence the composition and energy balance of the plasma. The latter influence is quantified by the EICS which we derive by using two semi-empirical methods which can be employed in the relevant energy range of 10-1000 eV. They are important molecular properties for plasma- and materials science. We discuss the foundations of the methods and present the cross sections of the high- and low-spin states of the species in their neutral ground states and of their cations.publishersversionpublishe

    Electronic structure and reactivity of tirapazamine as a radiosensitizer

    Get PDF
    Funding Information: We acknowledge that results presented here have been achieved (in part) using the LEO HPC infrastructure of the University of Innsbruck. Funding Information: Open access funding provided by University of Innsbruck and Medical University of Innsbruck. J.R. received the Portuguese National Funding Agency FCT through PhD scholarship grant PD/BD/142846/ 2018, and together with P.L.V., the Research Grants CEFITEC (UIDB/00068/2020) and PTDC/FIS-AQM/31281/2017. This work was also supported by the Radiation Biology and Biophysics Doctoral Training Programme (RaBBiT, PD/00193/2012); UCIBIO (UIDB/04378/2020). Publisher Copyright: © 2021, The Author(s).Tirapazamine (TP) has been shown to enhance the cytotoxic effects of ionizing radiation in hypoxic cells, thus making it a candidate for a radiosensitizer. This selective behavior is often directly linked to the abundance of O2. In this paper, we study the electronic properties of TP in vacuum, micro-hydrated from one up to three molecules of water and embedded in a continuum of water. We discuss electron affinities, charge distribution, and bond dissociation energies of TP, and find that these properties do not change significantly upon hydration. In agreement with its large electron affinity, and bond breaking triggered by electron attachment requires energies higher than 2.5 eV, ruling out the direct formation of bioactive TP radicals. Our results suggest, therefore, that the selective behavior of TP cannot be explained by a one-electron reduction from a neighboring O2 molecule. Alternatively, we propose that TP’s hypoxic selectivity could be a consequence of O2 scavenging hydrogen radicals.publishersversionpublishe

    Bound Electron Enhanced Radiosensitisation of Nimorazole upon Charge Transfer

    Get PDF
    This novel work reports nimorazole (NIMO) radiosensitizer reduction upon electron transfer in collisions with neutral potassium (K) atoms in the lab frame energy range of 10-400 eV. The negative ions formed in this energy range were time-of-flight mass analyzed and branching ratios were obtained. Assignment of different anions showed that more than 80% was due to the formation of the non-dissociated parent anion NIMO#~ at 226 u and nitrogen dioxide anion NC2- at 46 u. The rich fragmentation pattern revealed that significant collision induced the decomposition of the 4-nitroimidazole ring, as well as other complex internal reactions within the temporary negative ion formed after electron transfer to neutral NIMO. Other fragment anions were only responsible for less than 20% of the total ion yield. Additional information on the electronic state spectroscopy of nimorazole was obtained by recording a K+ energy loss spectrum in the forward scattering direction (9 « 0°), allowing us to determine the most accessible electronic states within the temporary negative ion. Quantum chemical calculations on the electronic structure of NIMO in the presence of a potassium atom were performed to help assign the most significant lowest unoccupied molecular orbitals participating in the collision process. Electron transfer was shown to be a relevant process for nimorazole radiosensitisation through efficient and prevalent non-dissociated parent anion formation.publishersversionpublishe

    On the electronic structure of methyl butyrate and methyl valerate

    Get PDF
    No. 2019-A0010806820 UIDB/00068/2020 PTDC/FIS-AQM/31281/2017Abstract: We present novel results of the analysis of the electronic structure of two aliphatic esters: methyl butyrate and methyl valerate. High-resolution photoabsorption spectra were collected and analyzed over the energy range 4.0–10.8 eV and showed for both the molecules not only a clear band of the HOMO to LUMO transition, but also vibronic structure associated with the first Rydberg-valence transition. Photoelectron spectra recorded from 9 to over 28 eV revealed many ionization states with the first adiabatic ionization energies found to be 9.977 eV and 9.959 eV for methyl butyrate and methyl valerate, respectively. Ab initio calculations have been performed in order to help assign the photoabsorption and photoelectron features. Photolysis life times in the atmosphere were calculated revealing that photolysis is not competitive over hydroxyl radical scavenging in the process of removal of these esters from the atmosphere. Graphical abstract: [Figure not available: see fulltext.]publishersversionpublishe

    Isobutyl acetate: electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations

    Get PDF
    The high-resolution vacuum ultraviolet photoabsorption spectrum of isobutyl acetate, C6H12O2, is presented here and was measured over the energy range 4.3–10.8 eV (290–115 nm). Valence and Rydberg transitions with their associated vibronic series have been observed in the photoabsorption spectrum and are assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. The measured photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the Earth’s upper atmosphere (20–50 km). Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl acetate and are compared with a photoelectron spectrum (from 9.5 to 16.7 eV), recorded for the first time. Vibrational structure is observed in the first photoelectron band of this molecule

    Electronic State Spectroscopy of Nitromethane and Nitroethane

    Get PDF
    Funding Information: L.V.S.D., A.S.B., and M.H.F.B. acknowledge support from the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). L.V.S.D., A.S.B., and M.H.F.B. also acknowledge Prof. Carlos de Carvalho for computational support at LFTC-DFis-UFPR and at LCPAD-UFPR. The authors acknowledge the beam time at the ISA synchrotron, Aarhus University, Denmark. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) CALIPSO under grant agreement n° 312284. P.L.V. acknowledges the Portuguese National Funding Agency (FCT) through research grant CEFITEC (UIDB/00068/2020), as well as his visiting professor position at Federal University of Paraná, Curitiba, Brazil. This contribution is also based upon work from the COST Action CA18212-Molecular Dynamics in the GAS phase (MD-GAS), supported by COST (European Cooperation in Science and Technology). Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.High-resolution photoabsorption cross-sections in the 3.7-10.8 eV energy range are reinvestigated for nitromethane (CH3NO2), while for nitroethane (C2H5NO2), they are reported for the first time. New absorption features are observed for both molecules which have been assigned to vibronic excitations of valence, Rydberg, and mixed valence-Rydberg characters. In comparison with nitromethane, nitroethane shows mainly broad absorption bands with diffuse structures, which can be interpreted as a result of the side-chain effect contributing to an increased number of internal degrees of freedom. New theoretical quantum chemical calculations performed at the time-dependent density functional theory (TD-DFT) level were used to qualitatively help interpret the recorded photoabsorption spectra. From the photoabsorption cross-sections, photolysis lifetimes in the terrestrial atmosphere have been obtained for both compounds. Relevant internal conversion from Rydberg to valence character is noted for both molecules, while the nuclear dynamics of CH3NO2 and C2H5NO2 along the C-N reaction coordinate have been evaluated through potential energy curves at the TD-DFT level of theory, showing that the pre-dissociative character is more prevalent in nitromethane than in nitroethane.publishersversioninpres

    Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of Brown fat metabolismo

    Get PDF
    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism

    Electron-Transfer-Induced Side-Chain Cleavage in Tryptophan Facilitated through Potassium-Induced Transition-State Stabilization in the Gas Phase

    Get PDF
    Fragmentation of transient negative ions of tryptophan molecules formed through electron transfer in collisions with potassium atoms is presented for the first time in the laboratory collision energy range of 20 up to 100 eV. In the unimolecular decomposition process, the dominating side-chain fragmentation channel is assigned to the dehydrogenated indoline anion, in contrast to dissociative electron attachment of free low-energy electrons to tryptophan. The role of the collision complex formed by the potassium cation and tryptophan negative ion in the electron transfer process is significant for the mechanisms that operate at lower collision energies. At those collision times, on the order of a few tens of fs, the collision complex may not only influence the lifetime of the anion but also stabilize specific transition states and thus alter the fragmentation patterns considerably. DFT calculations, at the BHandHLYP/6-311++G(3df,2pd) level of theory, are used to explore potential reaction pathways and the evolvement of the charge distribution along those.F.F.d.S., T.C., and A.R. acknowledge the Portuguese National Funding Agency FCT-MCTES for IF-FCT IF/00380/2014, SFRH/BD/52538/2014, and PD/BD/114449/2016 and together with P.L.-V. the research grants PTDC/FIS-AQM/31215/2017 and PTDC/FIS-AQM/31281/2017. This work was also supported by Radiation Biology and Biophysics Doctoral Training Programme (RaBBiT, PD/00193/2012); UIDB/00068/2020 (CEFITEC) and UIDB/04378/2020 (UCIBIO). M.J.C. and A.G. also thank FCT-MCTES UIDB/04046/2020 and UIDP/04046/2020, and A.G. thanks the SFRH/BPD/89722/2012 grant. G.G. is partially funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades (project no. PID2019-104727RB-C21) and CSIC (Project LINKA20085). O.I. acknowledges the Icelandic Center of Research (RANNIS) and the University of Iceland Research Fund for financial support. The authors thank Ragnar Bjornsson for fruitful discussions while preparing this manuscript.Pre-prin
    corecore