1,200 research outputs found

    Systematic Assessment of Chemokine Signaling at Chemokine Receptors CCR4, CCR7 and CCR10

    Get PDF
    Chemokines interact with chemokine receptors in a promiscuous network, such that each receptor can be activated by multiple chemokines. Moreover, different chemokines have been reported to preferentially activate different signalling pathways via the same receptor, a phenomenon known as biased agonism. The human CC chemokine receptors (CCRs) CCR4, CCR7 and CCR10 play important roles in T cell trafficking and have been reported to display biased agonism. To systematically characterize these effects, we analysed G protein- and β-arrestin-mediated signal transduction resulting from stimulation of these receptors by each of their cognate chemokine ligands within the same cellular background. Although the chemokines did not elicit ligand-biased agonism, the three receptors exhibited different arrays of signaling outcomes. Stimulation of CCR4 by either CC chemokine ligand 17 (CCL17) or CCL22 induced β-arrestin recruitment but not G protein-mediated signaling, suggesting that CCR4 has the potential to act as a scavenger receptor. At CCR7, both CCL19 and CCL21 stimulated G protein signaling and β-arrestin recruitment, with CCL19 consistently displaying higher potency. At CCR10, CCL27 and CCL28(4-108) stimulated both G protein signaling and β-arrestin recruitment, whereas CCL28(1-108) was inactive, suggesting that CCL28(4-108) is the biologically relevant form of this chemokine. These comparisons emphasize the intrinsic abilities of different receptors to couple with different downstream signaling pathways. Comparison of these results with previous studies indicates that differential agonism at these receptors may be highly dependent on the cellular context

    Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism

    Get PDF
    By analyzing and simulating inactive conformations of the highly-homologous dopamine D2 and D3 receptors (D2R and D3R), we find that eticlopride binds D2R in a pose very similar to that in the D3R/eticlopride structure but incompatible with the D2R/risperidone structure. In addition, risperidone occupies a sub-pocket near the Na+ binding site, whereas eticlopride does not. Based on these findings and our experimental results, we propose that the divergent receptor conformations stabilized by Na+-sensitive eticlopride and Na+-insensitive risperidone correspond to different degrees of inverse agonism. Moreover, our simulations reveal that the extracellular loops are highly dynamic, with spontaneous transitions of extracellular loop 2 from the helical conformation in the D2R/risperidone structure to an extended conformation similar to that in the D3R/eticlopride structure. Our results reveal previously unappreciated diversity and dynamics in the inactive conformations of D2R. These findings are critical for rational drug discovery, as limiting a virtual screen to a single conformation will miss relevant ligands

    Growth Spectrum Complexity Dictates Aromatic Intensity in Coriander (Coriandrum sativum L.)

    Get PDF
    © Copyright © 2020 McAusland, Lim, Morris, Smith-Herman, Mohammed, Hayes-Gill, Crowe, Fisk and Murchie. Advancements in availability and specificity of light-emitting diodes (LEDs) have facilitated trait modification of high-value edible herbs and vegetables through the fine manipulation of spectra. Coriander (Coriandrum sativum L.) is a culinary herb, known for its fresh, citrusy aroma, and high economic value. Studies into the impact of light intensity and spectrum on C. sativum physiology, morphology, and aroma are limited. Using a nasal impact frequency panel, a selection of key compounds associated with the characteristic aroma of coriander was identified. Significant differences (P < 0.05) were observed in the concentration of these aromatics between plants grown in a controlled environment chamber under the same photosynthetic photon flux density (PPFD) but custom spectra: red (100%), blue (100%), red + blue (RB, 50% equal contribution), or red + green + blue (RGB, 35.8% red: 26.4% green: 37.8% blue) wavelengths. In general, the concentration of aromatics increased with increasing numbers of wavelengths emitted alongside selective changes, e.g., the greatest increase in coriander-defining E-(2)-decenal occurred under the RGB spectrum. This change in aroma profile was accompanied by significant differences (P < 0.05) in light saturated photosynthetic CO2 assimilation, water-use efficiency (Wi), and morphology. While plants grown under red wavelengths achieved the greatest leaf area, RB spectrum plants were shortest and had the highest leaf:shoot ratio. Therefore, this work evidences a trade-off between sellable commercial morphologies with a weaker, less desirable aroma or a less desirable morphology with more intense coriander-like aromas. When supplemental trichromatic LEDs were used in a commercial glasshouse, the majority of compounds, with the exception of linalool, also increased showing that even as a supplement additional wavelength can modify the aromatic profile increasing its complexity. Lower levels of linalool suggest these plants may be more susceptible to biotic stress such as herbivory. Finally, the concentration of coriander-defining aromatics E-(2)-decenal and E-(2)-hexenal was significantly higher in supermarket pre-packaged coriander leaves implying that concentrations of aromatics increase after excision. In summary, spectra can be used to co-manipulate aroma profile and plant form with increasing spectral complexity leading to greater aromatic complexity and intensity. We suggest that increasing spectral complexity progressively stimulates signaling pathways giving rise to valuable economic traits

    Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole

    Get PDF
    Partial agonists of the dopamine D2 receptor (D2R) have been developed to treat the symptoms of schizophrenia without causing the side effects elicited by antagonists. The receptor-ligand interactions that determine the intrinsic efficacy of such drugs, however, are poorly understood. Aripiprazole has an extended structure comprising a phenylpiperazine primary pharmacophore and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore. We combined site-directed mutagenesis, analytical pharmacology, ligand fragments and molecular dynamics simulations to identify the D2R-aripiprazole interactions that contribute to affinity and efficacy. We reveal that an interaction between the secondary pharmacophore of aripiprazole and a secondary binding pocket defined by residues at the extracellular portions of transmembrane segments 1, 2 and 7 determine the intrinsic efficacy of aripiprazole. Our findings reveal a hitherto unappreciated mechanism through which to fine-tune the intrinsic efficacy of D2R agonists

    A thieno[2,3-d]pyrimidine scaffold is a novel negative allosteric modulator of the dopamine D2 receptor

    Get PDF
    Recently, a novel negative allosteric modulator (NAM) of the D 2-like dopamine receptors 1 was identified through virtual ligand screening. This ligand comprises a thieno[2,3-d]pyrimidine scaffold that does not feature in known dopaminergic ligands. Herein, we provide pharmacological validation of an allosteric mode of action for 1, revealing that it is a NAM of dopamine efficacy and identify the structural determinants of this allostery. We find that key structural moieties are important for functional affinity and negative cooperativity, whilst functionalization of the thienopyrimidine at the 5- and 6-positions results in analogues with divergent cooperativity profiles. Successive compound iterations have yielded analogues exhibiting a 10-fold improvement in functional affinity, as well as enhanced negative cooperativity with dopamine affinity and efficacy. Furthermore, our study reveals a fragment-like core that maintains low μM affinity and robust negative cooperativity with markedly improved ligand efficiency

    Fragment Based Design of New H 4 Receptor-Ligands with Anti-inflammatory Properties in Vivo

    Get PDF
    Using a previously reported flexible alignment model we have designed, synthesized, and evaluated a series of compounds at the human histamine H 4 receptor (H 4 R) from which 2-(4-methyl-piperazin-1-yl)-quinoxaline (3) was identified as a new lead structure for H 4 R ligands. Exploration of the structure-activity relationship (SAR) of this scaffold led to the identification of 6,7-dichloro 3-(4-methylpiperazin-1-yl)quinoxalin-2(1H)-one (VUF 10214, 57) and 2-benzyl-3-(4-methyl-piperazin-1-yl)quinoxaline (VUF 10148, 20) as potent H 4 R ligands with nanomolar affinities. In vivo studies in the rat reveal that compound 57 has significant antiinflammatory properties in the carrageenan-induced paw-edema model

    A quantitative thermal analysis of cyclists’ thermo-active base layers

    Get PDF
    It is well known that clothes used in sporting activity are a barrier for heat exchange between the environment and athlete, which should help in thermoregulation improvement. However, it is difficult to evaluate which top is best for each athlete according to the characteristics of the sport. Researchers have tried to measure the athlete’s temperature distribution during exercise at the base layers of tops with different approaches. The aim of this case study was to investigate the use of thermography for thermo-active base layer evaluation. Six new base layers were measured on one cyclist volunteer during a progressive training on a cycloergometer. As a control condition, the skin temperature of the same volunteer was registered without any layer with the same training. A training protocol was selected approximate to cycling race, which started from the warm-up stage, next the progressive effort until the race finished and at the end ‘‘cool-down’’ stage was over. In order to show which layer provided the strongest and weakest barrier for heat exchange in comparison with environment, the temperature parameters were taken into consideration. The most important parameter in the studies was the temperature difference between the body and the layers, which was changing during the test time. The studies showed a correlation between the ergometer power parameter and the body temperature changes, which has a strong and significant value. Moreover, the mass of every layer was checked before and after the training to evaluate the mass of the sweat exuded during the test. From this data, the layer mass difference parameter was calculated and taken into consideration as a parameter, which may correspond with the mean heart rate value from each training. A high and positive correlation coefficient was obtained between the average heart rate and the mass difference for the base layers. Thermal analysis seems to have a new potential application in the objective assessment of sports clothing and may help in choosing the proper clothes, which could support heat transfer during exercising and protect the body from overheating

    Low intrinsic efficacy for G protein activation can explain the improved side-effect profile of new opioid agonists

    Get PDF
    Biased agonism at G protein–coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus β-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as β-arrestin recruitment. At the μ-opioid receptor (MOR), G protein–biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain. However, it is unclear whether these improved safety profiles are due to a reduction in β-arrestin–mediated signaling or, alternatively, to their low intrinsic efficacy in all signaling pathways. Here, we systematically evaluated the most recent and promising MOR-biased ligands and assessed their pharmacological profile against existing opioid analgesics in assays not confounded by limited signal windows. We found that oliceridine, PZM21, and SR-17018 had low intrinsic efficacy. We also demonstrated a strong correlation between measures of efficacy for receptor activation, G protein coupling, and β-arrestin recruitment for all tested ligands. By measuring the antinociceptive and respiratory depressant effects of these ligands, we showed that the low intrinsic efficacy of opioid ligands can explain an improved side effect profile. Our results suggest a possible alternative mechanism underlying the improved therapeutic windows described for new opioid ligands, which should be taken into account for future descriptions of ligand action at this important therapeutic target

    Key determinants of selective binding and activation by the monocyte chemoattractant proteins at the chemokine receptor CCR2

    Get PDF
    Chemokines and their receptors collectively orchestrate the trafficking of leukocytes in normal immune function and inflammatory diseases. Different chemokines can induce distinct responses at the same receptor. In comparison to monocyte chemoattractant protein-1 (MCP-1; also known as CCL2), the chemokines MCP-2 (CCL8) and MCP-3 (CCL7) are partial agonists of their shared receptor CCR2, a key regulator of the trafficking of monocytes and macrophages that contribute to the pathology of atherosclerosis, obesity, and type 2 diabetes. Through experiments with chimeras of MCP-1 and MCP-3, we identified the chemokine amino-terminal region as being the primary determinant of both the binding and signaling selectivity of these two chemokines at CCR2. Analysis of CCR2 mutants showed that the chemokine amino terminus interacts with the major subpocket in the transmembrane helical bundle of CCR2, which is distinct fromthe interactions of some other chemokines with the minor subpockets of their receptors. These results suggest the major subpocket as a target for the development of small-molecule inhibitors of CCR2. 2017 © The Authors

    The effectiveness of injury prevention programs to modify risk factors for non-contact anterior cruciate ligament and hamstring injuries in uninjured team sports athletes: A systematic review

    Get PDF
    Background Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. Objective The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. Data Sources PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Main Results Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Conclusions Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors
    • …
    corecore