11 research outputs found

    Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Get PDF
    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements Δon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to Δon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated

    Insights into the Catalytic Activity of Nitridated Fibrous Silica (KCC-1) Nanocatalysts from (15) N and (29) Si NMR Spectroscopy Enhanced by Dynamic Nuclear Polarization.

    Get PDF
    International audienceFibrous nanosilica (KCC-1) oxynitrides are promising solid-base catalysts. Paradoxically, when their nitrogen content increases, their catalytic activity decreases. This counterintuitive observation is explained here for the first time using (15) N-solid-state NMR spectroscopy enhanced by dynamic nuclear polarization

    NMR and EPR characterization of functionalized nanodiamonds

    No full text
    We investigated the potential of solid-state NMR using magic angle spinning (MAS) with and without dynamic nuclear polarization (DNP) and electron paramagnetic resonance (EPR) for the characterization of functionalized nanodiamonds (NDs). We showed that conventional 1H, 31P, and 13C solid-state NMR spectra allow differentiating in a straightforward way NDs from commercial sources and custom-made NDs bearing aromatic or aliphatic phosphonate moieties at their surface. Besides, the short nuclear relaxation times prove the close proximity between the endogenous paramagnetic centers of NDs and the grafted organic moieties. EPR spectra confirmed the presence of these paramagnetic centers in functionalized NDs, which are centered on dangling bonds as well as a few N0 defects, corresponding to the substitution of carbon atoms by nitrogen ones. Hyperfine sublevel correlation spectroscopy indicates that the N0 paramagnetic centers are mostly located in the disordered shell of NDs. Preliminary DNP-enhanced NMR experiments at 9.4 T and 100 K under MAS have shown a lack of significant DNP enhancement, which can be attributed to the short relaxation times of the unpaired electrons and the nuclei in NDs. When using exogenous polarizing agents, the endogenous unpaired electrons contribute to a leakage of polarization. Furthermore, low temperatures lead to a broadening of NMR signals. It therefore appears that conventional direct excitation remains the NMR method of choice for the characterization of functionalized NDs

    NMR and EPR Characterization of Functionalized Nanodiamonds

    No full text
    corecore