1,840 research outputs found

    Estimation of tunnel blockage from wall pressure signatures: A review and data correlation

    Get PDF
    A method is described for estimating low speed wind tunnel blockage, including model volume, bubble separation and viscous wake effects. A tunnel-centerline, source/sink distribution is derived from measured wall pressure signatures using fast algorithms to solve the inverse problem in three dimensions. Blockage may then be computed throughout the test volume. Correlations using scaled models or tests in two tunnels were made in all cases. In many cases model reference area exceeded 10% of the tunnel cross-sectional area. Good correlations were obtained regarding model surface pressures, lift drag and pitching moment. It is shown that blockage-induced velocity variations across the test section are relatively unimportant but axial gradients should be considered when model size is determined

    Ground simulation and tunnel blockage for a jet-flapped, basic STOL model tested to very high lift coefficients

    Get PDF
    Ground effects experiments and large/small-tunnel interference studies were carried out on a model with a 20-inch (50.8 cm) span wing. The wing, which includes a highly deflected knee-blown flap can be fitted with unflapped tips and slats. A low-mounted tailplane can be fitted to the aft fuselage. Three-component balance meaurements, made with a fixed ground equipped with a single boundary-layer blowing slot, were compared with datum, moving-ground results. Good comparisons were obtained up to model blowing momentum coefficients of approximately two, after which the particular floor blowing settings used proved insufficient to prevent floor separation in the vicinity of the model. Skin friction measurements, taken routinely along the floor centerline, proved invaluable during the analysis of results, and their use is recommended as input to determination of floor BLC setting. A careful investigation was made of pitching moments, including tail-on, close-to-ground cases, with favorable results. Drag proved the most sensitive to the change from a moving to the boundary-layer controlled ground

    Experimental study of the separating confluent boundary-layer. Volume 2: Experimental data

    Get PDF
    An experimental low speed study of the separating confluent boundary layer on a NASA GAW-1 high lift airfoil is described. The airfoil was tested in a variety of high lift configurations comprised of leading edge slat and trailing edge flap combinations. The primary test instrumentation was a two dimensional laser velocimeter (LV) system operating in a backscatter mode. Surface pressures and corresponding LV derived boundary layer profiles are given in terms of velocity components, turbulence intensities and Reynolds shear stresses as characterizing confluent boundary layer behavior up to and beyond stall. LV derived profiles and associated boundary layer parameters and those obtained from more conventional instrumentation such as pitot static transverse, Preston tube measurements and hot-wire surveys are compared

    A general basis set algorithm for galactic haloes and discs

    Full text link
    We present a unified approach to (bi-)orthogonal basis sets for gravitating systems. Central to our discussion is the notion of mutual gravitational energy, which gives rise to the self-energy inner product on mass densities. We consider a first-order differential operator that is self-adjoint with respect to this inner product, and prove a general theorem that gives the conditions under which a (bi-)orthogonal basis set arises by repeated application of this differential operator. We then show that these conditions are fulfilled by all the families of analytical basis sets with infinite extent that have been discovered to date. The new theoretical framework turns out to be closely connected to Fourier-Mellin transforms, and it is a powerful tool for constructing general basis sets. We demonstrate this by deriving a basis set for the isochrone model and demonstrating its numerical reliability by reproducing a known result concerning unstable radial modes.Comment: to be published in Astronomy & Astrophysic

    Models of Distorted and Evolving Dark Matter Halos

    Get PDF
    We investigate the ability of basis function expansions to reproduce the evolution of a Milky Way-like dark matter halo, extracted from a cosmological zoom-in simulation. For each snapshot, the density of the halo is reduced to a basis function expansion, with interpolation used to recreate the evolution between snapshots. The angular variation of the halo density is described by spherical harmonics, and the radial variation either by biorthonormal basis functions adapted to handle truncated haloes or by splines. High fidelity orbit reconstructions are attainable using either method with similar computational expense. We quantify how the error in the reconstructed orbits varies with expansion order and snapshot spacing. Despite the many possible biorthonormal expansions, it is hard to beat a conventional Hernquist-Ostriker expansion with a moderate number of terms (≳15\gtrsim15 radial and ≳6\gtrsim6 angular). As two applications of the developed machinery, we assess the impact of the time-dependence of the potential on (i) the orbits of Milky Way satellites, and (ii) planes of satellites as observed in the Milky Way and other nearby galaxies. Time evolution over the last 5 Gyr introduces an uncertainty in the Milky Way satellites' orbital parameters of ∼15\sim 15 per cent, comparable to that induced by the observational errors or the uncertainty in the present-day Milky Way potential. On average, planes of satellites grow at similar rates in evolving and time-independent potentials. There can be more, or less, growth in the plane's thickness, if the plane becomes less, or more, aligned with the major or minor axis of the evolving halo.Comment: MNRAS, submitte

    Knowing autism: The place of experiential expertise

    Get PDF
    Jaswal & Akhtar challenge the notion that autistic people have diminished social motivation, prompted in part by a desire to take autistic testimony seriously. We applaud their analysis and go further to suggest that future research could be enhanced by involving autistic people directly in the research process

    DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism

    Full text link
    Inverted repeat (IR) sequences in DNA can form non-canonical cruciform structures to relieve torsional stress. We use Monte Carlo simulations of a recently developed coarse-grained model of DNA to demonstrate that the nucleation of a cruciform can proceed through a cooperative mechanism. Firstly, a twist-induced denaturation bubble must diffuse so that its midpoint is near the centre of symmetry of the IR sequence. Secondly, bubble fluctuations must be large enough to allow one of the arms to form a small number of hairpin bonds. Once the first arm is partially formed, the second arm can rapidly grow to a similar size. Because bubbles can twist back on themselves, they need considerably fewer bases to resolve torsional stress than the final cruciform state does. The initially stabilised cruciform therefore continues to grow, which typically proceeds synchronously, reminiscent of the S-type mechanism of cruciform formation. By using umbrella sampling techniques we calculate, for different temperatures and superhelical densities, the free energy as a function of the number of bonds in each cruciform along the correlated but non-synchronous nucleation pathways we observed in direct simulations.Comment: 12 pages main paper + 11 pages supplementary dat

    Quark Masses: An Environmental Impact Statement

    Full text link
    We investigate worlds that lie on a slice through the parameter space of the Standard Model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as "congenial" worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charges one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses and nuclear masses as functions of baryon masses. We check for the stability of nuclei against fission, strong particle emission, and weak nucleon emission. For two light quarks with charges 2/3 and -1/3, we find a band of congeniality roughly 29 MeV wide in their mass difference. We also find another, less robust region of congeniality with one light, charge -1/3 quark, and two heavier, approximately degenerate charge -1/3 and 2/3 quarks. No other assignment of light quark charges yields congenial worlds with two baryons participating in nuclei. We identify and discuss the region in quark-mass space where nuclei would be made from three or more baryon species.Comment: 40 pages, 16 figures (in color), 4 tables. See paper for a more detailed abstract. v4: Cleaning up minor typo

    PREPARE: guidelines for planning animal research and testing

    Get PDF
    There is widespread concern about the quality, reproducibility and translatability of studies involving research animals. Although there are a number of reporting guidelines available, there is very little overarching guidance on how to plan animal experiments, despite the fact that this is the logical place to start ensuring quality. In this paper we present the PREPARE guidelines: Planning Research and Experimental Procedures on Animals: Recommendations for Excellence. PREPARE covers the three broad areas which determine the quality of the preparation for animal studies: formulation, dialogue between scientists and the animal facility, and quality control of the various components in the study. Some topics overlap and the PREPARE checklist should be adapted to suit specific needs, for example in field research. Advice on use of the checklist is available on the Norecopa website, with links to guidelines for animal research and testing, at https://norecopa.no/PREPARE

    Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Get PDF
    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism
    • …
    corecore