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SUMMARY

Ground effects experiments and large/small-tunnel interference studies
were carried out on a model with a 20-inch (50.8 ¢m) span wing. The wing,
which includes a highly deflected knee-blown flap can be fitted with unflapped
tips and slats. A low-mounted tailplane can be fitted to the aft fuselage.

Three-component balance measurements, made with a fixed ground equipped
with a single boundary-layer blowing slot, were compared with datum, moving-
ground results. Good comparisons were obtained up to model blowing momentum
coefficients of approximately two, after which the particular floor blowing
settings used proved insufficient to prevent floor separation in the vicinity
of the model. Skin friction measurements,  taken routinely along the floor
centerline, proved invaluable during the analysis of results and their use is
recommended as input to determination of floor BLC setting. A careful inves-
tigation was made of pitching moments, including tail-on, close-to-ground cases,
with favorable results. Somewhat surprisingly, drag proved the most sensitive
to the change from a moving to the boundary-layer controlled ground

Matched sets of center-tunnel high-lift tests were made on the same model
in the NASA/AAMRDL 7' x10' Wind Tunnel and in the Lockheed~Georgia 30' x 42"
Low-Speed Wind Tunnel. Wake blockage corrections, derived from working section
entry and exit pressures, were applied in real time to provide ''corrected q"
in the working section of the small tunnel. The moving ground was run routinely
in that tunnel. Tests extended to extremely high C,'s (up to 10) and three-
dimensional circulation lift limits were noted. Detailed pitch/yaw probe
measurements in the two tunnels showed that, for the attached flow configura-
tions, the reduced vortex wake penetration into the smaller tunnel was consis-
tent with the flow rotation correctinn applied during constraint corrections to
angle of attack. Good comparisons were obtained between large-tunnel and
corrected small-tunnel force and momert results provided the inner wing was
unstalled. Once strong separation existed ahead of the powered flap, in the
small tunnel, drastic reductions in drag were encountered, though with little
modification to lift. A full explanation for this has not been found. However,
it is noted that the blockage correction method used does not include allowance
for stall-induced changes in solid blockage (stall bubble), and excessive on-
line speed corrections may have been applied.

A copy of this document is retained in the Lockheed-Georgia Company
Engineering Report files. The identifying report number is LG76ERO047.
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1. INTRODUCTION

Large-scale tests on powered, STOL models can experience at least two
major difficulties in establishing confidence in the results of wind tunnel
tests. The first concerns the application of wind tunnel blockage corrections
and the second arises during ground effects testing over a non-moving tunnel
floor or ground board which frequently is the only option at large scale.
Here, ground {or tunnel floor) separation can invalidate the results of high
1ift tests.

In studies sponsored by NASA-Ames (see refs. 1 to 3), the problem is
addressed of simulating a moving ground without actually having one. This is
most desirable because of the logistic and operational problems associated
with the belt-type of moving ground at large scale. Figure 1.1 shows a knee-
blowing, jet-flapped model used in the above studies mounted over a moving
ground in the Lockheed-Georgia 30" by 42'" (76.2 cm x 106.7 cm) Low Speed Wind
Tunnel. These tests showed that, even with a moving ground present, a vortex
could be trapped below the wing under high-1ift, near-ground conditions in the
manner shown in Figure 1.2, A scheme was devised and tested (ref. 2) which
employs a fixed floor with tangential blowing to reproduce such flows, Check-
out required extensive pressure plotting studies which included a configura-
tion with a fuselage-mounted, round 1ifting jet. On the basis of techniques
developed during these tests, a design study was carried out for application
of floor-blowing technique in the NASA-Ames 40' by 80' Wind Tunnel (ref. 3).
However, it was felt that a broader investigation including balance measure-
ments over a range of configurations was desirable before the scheme should be
imp Temented.

In 1973, an independent study was carried out by Lockheed in which a
modified version of the above model was tested in the above Lockheed tunnel
and then in the Lockheed 23% ft. by 164 ft. (7.08 m by 4.95 m) wind tunnel.
This was an investigation of a newly devised method for estimating wake block-
age from pressure measurements at the upstream and downstream ends of the test
section (ref. 4). Modifications were made to the model at this time including
replacement of the fuselage by a simple hollow sting which carried the air
supply and a reduction in knee slot height from 0.114 cm (0.042") to approxi-=
mately 0.041 cm (0.016') in order to reduce unwanted spanwise flows (ref. 2).
Pressure plotting techniques were still employed, however. The new wake-
blockage method successfully reproduced large-tunnel 1ift coefficients, in the
small tunnel, up to the maximum C_ tested, fifteen. Since no corrections were
attempted for solid/bubble blockage, this result testifies to the aerodynamic
cleanliness of the model. [Hackett and Wilsden (ref. 5) have recently shown
that blockage due to separated flows may also be estimated from wall pressures,
but these are required along the entire test section length.]

The present test series represents a continuation of both ground blowing
and tunnel blockage investigations along the lines suggested by previous
studies (ref. 4). Removable tips were made which could increase the model
span from 50.8 ecm (20') to 76.2 cm (30"). A detachable tailplane was also
fitted. A three-component balance and an air bridge were installed in the



model, covered by a minimum fairing as shown in Figure 1.3. This provided the
important advantage of permitting varying incidence runs. With previous
pressure plotting techniques, this was largely precluded because of the.volume
of data involved.

In the present tests the moving ground was again the obvious baseline for
the blown-ground tests. For the interference-free ''free air'' datum needed for
the tunnel corrections investigation, the AAMRDL 7' x10' (3.04x2.13 m) tunnel
was used (see Figure 1.4). A total of 418 runs were made in the smaller tunnel
and 100 were made at the AAMRDL. Of these, about 80% were force tests, the
balance being flow investigations of various kinds. Further details of the
model, its variants, and its calibrations are given in Section 2. Section 3
describes test facilities, the associated calibrations, and test techniques.

To establish model properties out of ground effect, the wind tunnel
blockage studies are described first in Sections 4 and 5. These concern fairly
extensive flow investigations and ''production'' three-component balance runs,
respectively. The overall objectives were to verify the previous blockage
correction results via balance measurements and to extend the range of con-
figurations tested. A very specific objective was to determine the conditions
under which corrections for wake blockage (together with conventional image
corrections) was adequate. This is important because the methods for evalua-
tion of solid blockage (ref. 5) are more difficult to apply, on line. For this
reason, the model was deliberately stalled by selective removal of slats in
some tests.

The objectives of the ground effects experiments {Sections 6 and 7) again
concerned broader verification across various model configurations. Of par-
ticular concern was the fact that the rather thick blown-boundary layer might
interfere with pitching moments. Accordingly, a low-mounted tailpliane was
fitted to the model in order to provide a severe test of the method. In a
subsidiary investigation, dummy support strut shrouds were mounted beneath the
model at one chord and again at two chords altitude. Toe-in angle was varied
in relation to the local, underwing flow angle and the effects on force
balance were recorded. Ground blowing BLC was employed.

Overviews of results from the tunnel blockage and ground-blowing investi-
gations may be found at the ends of Sections 5 and 7, respectively. Conclusions
and recommendations are given in Section 8.



2. WIND TUNNEL MODELS AND THEIR CALIBRATION

2.1 The Basic Model

Figure 2.1 shows the model with tips fitted, supported by its air supply
pipe. The low wing has a span of 76.2 cm (30'") and tip chord of 12.78 cm
(5.02') giving a reference area of 973.8 sq cm (1.048 sq ft.). However, for
continuity with previous results (ref. 2), the basic tips-off reference
dimensions are used in the majority of this report. These are: span, 50.3
cm (20"); chord, 10.16 cm (¥'); and area 516.1 sq cm (0.556 sq ft.).

The inboard airfoil section (Figure 2.2) is derived from a supercritical
design, thickened on the lower surface to approximately 16% total thickness
and modified to accommodate an internal air duct and a fixed, highly deflected
flap with knee blowing. The slot upper member is supported by posts at inter-
vals along the span, giving a mean gap of .0415 cm (.0163 in.), which increases
when pressurized. C, values up to 6.0 were employed at a tunnel 'q' of 5 psf
(239.4 N/sq.m), requiring a pressure ratio of approximately 3.2 in the plenum.
Higher C,'s were obtained at reduced tunnel speed.

The tip section was designed as a compromise fairing which fitteu to the
main wing with minimal spanwise discontinuities. Slats can be fitted sepa-
rately to basic wing and to the tip extensions. A tailplane (Figure 1.3) of
25.4 c¢cm (10") span and 6.35 cm (2.5") chord can be fitted at several setting
angles. It has an inverted St Cyr 244 section. This section, which is
defined in Aviation Handbook by Warner and Johnston (McGraw-Hill, 1931), was
chosen for its high stall angle characteristics at low Reynolds number.

The rather deep furelage fairing accommodates a strain gauged sting
balance with a bellows-type air bridge mounted above it. Though this intro-
duces fairly high axial loads, these oppose drag forces and can be calibrated
accurately. Internal total tubes and static orifices weirz used for measure-
ment and control of slot blowing rates.

The model sting was attached to an incidence quadrant mounted beneath the
wind tunnel floor. Incidence was measured using an accelerometer attached to
this quadrant. For ground effects testing, the quadrant, sting, and model
were raised and lowered as a unit by means of a permanently installed hydrau-
lically powered 1ift table. Generally similar arrangements were used in the
NASA/AAMRDL tunhel. However, it was more convenient to test the model in the
inverted position in this facility.



2.2 Slot Momentum and Thrust Calibrations

Considerable care was necessary in these calibrations because the model
slot opened somewhat under pressure and because the air bridge bellows area
was not sufficiently large that dynamic tares (momentum flux) could be neg-
lected. This yielded the equation

A
”S°Z = 0.0336 + 0.00061 (<1) (2.1)
Po

where S is the without-tips reference area. This equation was used in con-
junction with the conventional expression for momentum coefficient, namely

. ) A
- 2 o noz
Ch =7vCp M (759 (~—§—9 (2.2)

where ED is a slot discharge coefficient, taken as 0.98 and Mach number is
derived from
y=1

we = (2ot o
we = (e - (2.3)

Since the varying slot area affects the axial force tare on the air bridge and
because of the impact on drag measurements, a special dynamic tare calibration
rig was made (Figure 2.4). This replaced the model wing with a spanwise
plenum with long carefully aligned holes drilled at each end. Directing.

the air spanwise at right angles to the balance axis and in opposite direc-
tions permitted full mass flows to be passed through the air bridge

without any 1ift drag or pitching moment due to jet reaction. Bellows tares
could then be directly measured by the balance at various exit areas depending
upon the number of holes left open. The effect on the slope of the drag tare
calibration may be seen in Figure 2.5. There is about a 6% change over the
test range. Similar plots were produced for 1ift and pitching moment.

Figure 2.6 shows the result of a static test on the basic wing over the
full pressure range to be used in the tunnel. Thrust coefficient is very
closely proportional to (H/po-l) and lies somewhat below the calculated mo-
mentum curve as is usually the case. Turning improves fairly rapidly up to a
thrust coefficient of two and asymptotes to about 68 degrees thereafter. The
upper surface angle of the flap is 76 degrees. Comparison with pressure and
trailing edge traverse integrations quoted by Hackett and Lyman (ref. 10)
showed close correspondence with CT (Figure 2.6) up to a value of abou': three.
Further details of flow distributions are quoted in the same reference.



3. TEST FACILITIES, INSTRUMENTATION, AND SCHEDULES

3.1 The Lockheed-Georgia 30'' x 42'' Low Speed Wind Tunnel

The tunnel is located at the Lockheed-Georgia Company Research Laboratory.
The test section nominal dimensions give a height-to-width ratio of 0.7 and a
cross-sectional area of 0.814 square meters. The tunnel, shown in Figure 3.1,
utilizes a constant-speed motor running at 1200 rpm and rated at 400 horse-

power. A 6-foot (1.82 m) diameter fan is manually controlled by an eddy
current variable speed unit.

The model was sting mounted via an internal three-component strain gauge
balance. The sting is attached to a motor-driven quadrant for attitude con-
trol. Three ganged 48-port type D3 scanivalves were used for model internal
and supply pressures, boundary layer control box, Preston tubes and boundary
layer rake pressures, and tunnel wall static pressures. An additional single
scanivalve was used for acquiring the 35 pressures of the rake of seven five-
holed probes. A 250 psi transducer was used for the internal and supply
pressure and 2.5 psi transducers for all the others.

The tunnel speed was maintained manually utilizing a display of corrected
dynamic pressure, which is described further in Section 3.5. The mass flow
through the model was initially measured with an orifice in the auxiliary air
supply line. This permitted estimation of the discharge coefficient at the
biown flaps at which time the orifice was removed and all subsequent measure-
ments made on the basis of model plenum pressure. The resulting momentum
coefficient, and the internal balance pressure tares associated with it, were
then obtained in the manner outlined in Section 2.

The data acquisiticn process was fully automatic and utilized a Lockheed
Electronics MAC-16 digital computer. The acquisition and reduction of the
data is further described in Section 3.5.

3.2 The NASA/AAMRDL 7 x 10~Foot Wind Tunnel

The NASA/AAMRDL 7 x 10-foot wind tunnel is located in the NASA-Ames
Research Center complex at Moffett Field, California. This tunnel is a single-
return type with the settling chamber vented to atmosphere. The contraction
ratio of 14 and the test section design result in an undetectable difference
between contraction pressure drop and measured dynamic pressure at the model
location for the speed range employed in the subject test. The balance, air
bridge, and air supply pipe used in the small-tunnel test were retained for
the test in the AAMRDL tunnel. The air supply pipe was fastened to an articu-
lated sting as shown in Figure 1.4. The sting drive mechanism provides
infinitely variable pitch and yaw capability within an approximately 40-degree
cone. High-pressure air for the knee-blown flap was piped through the sting
to the model air supply pipe.



The model plenum pressure was controlled from the test section by exercis-
ing direct control over the dome pressure of a large pressure regulator located
in the air supply line.

The seven-probe wake rake of five-holed probes was mounted on a remotely
controlled traverse mechanism which czn position the rake virtually anywhere in
the test section, barring mechanical interference with the model or support
system.

Model plenum and air supply pipe pressures were monitored using =50 psid
Statham pressure transducers. Wake rake pressures were measured using six 48~
port type D scanivalves fitted with Statham +2.5 psid pressure transducers.

Test section dynamic pressure was calibrated prior to model entry using a
precision pitot tube and two +0.3 psid Statham pressure transducers supplied
by Lockheed. These transducers were also used to monitor and record the tunnel
contraction pressures during the test.

A twelve-channel data system was used to automatically record balance out-
put, model internal pressures, tunnel conditions, and wake rake scanivalve
information. Angle-of-attack and wake rake position data were input manually.
Al]l of the data were displayed continuously in the control room.

Preliminary, on-line reduced data were available throughout the test. The
basic data were also recorded on IBM cards, providing a method for correcting
and updating the data prior to final reduction.

3.3 Ground-Plane Configurations

Three ground-plane configurations are available in the test section: the
normal solid floor, a moving-belt ground plane (Figure 3.2), and a tangentially-
blown, boundary-layer-controiled floor (Figure 3.3). Dimensional details may be
found in Figure 3.4. Configuration change is accomplished in about four hours.

The moving-ground (Figure 3.2) spans 76.2 cm (30 inches) of the 106.7 cm
(42 inch) test section width and has an effective length of 96.5 cm (38 inches)
between roller centers. The belt is powered by a hydraulic motor rated at
approximately 20 H.P., which is adequate up to more than 30.5 m/sec (100
ft/sec). The belt speed, which is continuously variable, is monitored via the
voltage output of a '"Globe'' DC motor, coupled to a driven roller and used as a
tachogenerator. The belt speed was maintained at the free stream velocity of
the test section for all moving ground tests. Calibration was made using a
pulse counter and a digital voltmeter.

Tracking of the belt is currently monitored and adjusted manually. Tension
adjustments are made at one end of the nondriven roller, the other end being
permanently set. Principal adjustments are found to be necessary during start-
up and shutdown, though some changes have to be made when model 1ift is in~
creased under near-to-ground conditions. Significant increases in power are
usually also required in these circumstances.
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The boundary-layer-controlled ground plane (Figure 3.3) is provided with
five 76.2 cm (30-inch) long blowing slots spaced at 10.16 (4-inch) intervals
forward of the center of the test section. Spacers in the slots make avail-
able heights of .081, .129, and .170 cm (.032", .051", and .067"). The
latter was used throughout the present tests. Each slot has a large, separate
plenum, and a separate control valve. Each plenum has a static pressure tap-
ping, which is used to measure and set slot pressure ratio. Slot velocities
up to 140 m/sec ‘460 ft/sec) are available. There are also surface static
pressure orifices and Preston tubes. Full details may be found in Reference
2.

3.4 Data Reduction in the 30" x 42" Tunnel

Data acquisition control and collection was accomplished using an 8K-
storage Lockheed Electronics MAC-16 digital computer. The acquired data, in
raw data counts, was temporarily stored on a Burroughs Disc, and partially
displayed on the tunnel teletype. Final data reduction was accomplished on a
second, 35K, MAC-16 computer that was equipped with a FORTRAN compiler and
conventional library routines.

Data reduction was normally done daily although the MAC-16 Disc System
would permit on~line reduction should the need arise. At the time of the re-
duction, the raw data was transferred to magnetic tape for permanent record.

The acquired data was obtained in three discrete routines. The first
scan consisted of a sweep of all data channels which resulted in acquisition
of internal balance data, pitch attitude, and auxiliary air supply tempera-
ture. The second scan was restricted to the channels of the three-gangea
scanivalves, and the third scan restricted to the channel of the rake scani-
valve. Tunnel conditions of total pressure, dynamic pressure, and total
temperature were acquired during the initial scan, at each scanivalve porting
during the secand scan, and at each probe (fifth porting) during the third
scan.

All acquired data was averaged over 15 samples taken at 25-millisecond
intervals. All scanivalve data was acquired after an initial settling time
of 500 milliseconds after each porting.

3.5 Test Section Flow Calibration and Control
in the 30" x 42'" Tunnel

Differing test-section speed-control procedures were followed for ground
effects and for tunnel interference studies. Since no corrections were de-
sired in the former case and comparisons were being made in the same tunnel, a
conventional contraction pressure~drop type of calibration was employed, based
upon a center-tunnel calibration using a 5/8-inch pitot static probe and a
precision water manometer.



For center-tunnel testing, strong blockage effects were expected, and it
was highly desirable to correct for these in real time, both to permit testing
at 'whole' C,'s and thereby avoid cross-plotting during data reduction and also
because comparisons were to be made with another tunnel of larger size.

The method used is an automatic version of the wake blockage correction
method devised by Hackett and Boles (ref. 4). A full explanation of the setup
and calibration of the system may be found in the Appendix. Contraction up-
stream and downstream pressures are sensed using pressure transducers vented to
atmosphere. This is equivalent to a downstream working section reference
pressure since it is here that the tunnel is vented to atmosphere.

A voltage divider network (Figure 3.5) is arranged so that the mean of
the model-induced static pressure change between the ends of the working sec-
tion is ''seen' by the system as the reference static pressure, which defines
'q'. Suitable differencing with the contraction upstream static pressure then
permits a blockage-corrected 'q' to be displayed for use in tunnel control,
which is manual.

3.6 Run Schedules and Procedures

The run schedule and test parameters for the wall constraints tests are
shown in Figure 3.6. The configurations and conditions shown were the same
for both the small and large-tunnel tests except that the tail incidence was
20 degrees in the large tunnel and zero degrees in the small tunnel.

Both test sections were calibrated prior to the respective tests using a
precision pitot tube and pressure transducers supplied by Lockheed. Tunnel
conditions and model plenum pressure were closely monitored during the tests.
On-line data reduction in the large tunnel facilitated the monitoring opera-
tion by providing immediate print-out of computed momentum coefficient. The
normal procedure was to repeat points in which dynamic pressure or momentum
coefficient fell outside specified tolerances. OCn-line data reduction was rnot
available during the small-tunnel test. Limited printout of the raw data was
available, however; and frequent checks of model plenum pressure were made
using a smaill hand-held calculator. The automatic C, system employed in the
small tunnel provided real time monitoring of corrected dynamic pressure.
Because of the extreme lift range of tests (C_ up to 19), a moving belt ground
plane moving at free-stream velocity was used during the small tunnel tests to
exclude the effects of floor separation on the results.

The basic procedure for the center tunnel tests was as follows:

1. Perform force tests of various model configurations in the small
tunnel using the '‘corrected g'' technique described in Section 3.5.



2. Carry out flow surveys in the small tunnel near the tail location
to determine wing wake location and tail environment characteris-
tics.

3. Perform flow visualization experiments in the small tunnel to aid
in determining wing and tail stall conditions.

L, Duplicate 1, 2, and 3 above in the large tunnel making no correc-
tions {(assuming the data to be recorded under ''free air"
conditions).

5. Compare fully corrected small tunnel data with the uncorrected
large-tunnel data. The results of this comparison are fully
discussed in Sections 4 and 5.

Figure 3.7 gives the run schedule and test parameters for the ground
effects tests. The ground effects tests were not run at corrected dynamic
pressure. It was felt that this was not necessary because the tests were in-
tended for a ''one-on-one'' comparison within the single facility. In addition,
the 'q' correction method is new and, for the present, is unique to the
Lockheed 30 x 42-Inch Wind Tunnel. Use of the correction method here would
make comparison with other facilities, not so equipped, difficult.

The velocity of the moving ground was controlled by manually adjusting
the flow of fluid tu the hydraulic motor powering the downstream pulley. Speed
was monitored by visual observation of the voltage output of a DC Globe motor
attached to the shaft of the upstream pulley. The DC motor was previously
calibrated in volts/RPM. Belt speed was then calculated using the DC motor
output (RPM) and the measured diameter of the pulley.

The floor blowing rates were calibrated, set, and monitored using a 76 cm
(30-inch) water manometer attached to the floor blowing plenum. The flow dis-
tribution from the floor blowing slot was surveyed using a hand-held total
pressure tube. Flow distribution was determined to be constant except for
small regions (approximately 0.635 cm~ .25 inches wide) immediately downstream
of the slot spacers.

During both ground effects testing and center tunnel testing in the small
tunnel, the wake rake position was adjusted manually. The initial spanwise,
streamwise, and height positions were set with the tunnel off. The rake was
then adjusted in height by pulling the rake shaft, through a hole in the top of
the test section. Exact height change was determined by measuring the change
in length of the exposed shaft. Correct alignment was established by virtue
of machined flanges and holes in the tunnel roof fittings.

The general test procedure for the ground effects testing was as
follows:

1. Determine model performance at 1 and 2 wing chord heights above
the moving ground. These tests included balance data, tail
environment tests and flow visualization for the various model
configurations.
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Using the boundary layer control floor, determine the blowing
rates (as a function of model! 1ift and height) that provide
good agreement between moving ground lift and corresponding
blown ground results for the baseline configurations.

Carry out routine tests using the floor blowing parameters
determined in 2 above.

Compare routine moving belt results with routine blown floor
results for various configurat.ons. The results of these
comparisons are discussed in Sections 6 and 7.



4. WIND TUNNEL INTERFERENCE STUDY: INTRODUCTION

4,1 The General Nature of the Flow

Fixed-ground, floor-tuft studies provided the tunnel flow breakdown
boundary shown in Figure 4.1 with the basic model at center tunnel. The break-
down occurred earlier than indicated by South's (ref. 6) or by Turner's (ref.
7) criteria, probably because of the high jet injection angles. (1t passed
through the vertical at a little more than 20-degrees incidence.) In order to
provide better test conditions, the moving belt ground plane was run routinely
at nominal tunnel speed for all except the lowest blowing momentum coeffi-
cients.

Figure 4.2 shows the basic moving- versus fixed-ground 1ift performance.
It is clear that significant errors occur at the highest 1ift coefficients
with the fixed ground. However, C_'s up to ten are of greater practical
interest and flow field measurements (see below) have been restricted accord-
ingly. The ten-plus range of C| is mainly of interest in conjunction with
three~-dimensionally-limited 1ift, but does provide a useful check on the
extent of the applicability of the present tunnel correction methods.

Even if impingement problems are minimal, there is always the possibility
that the near-wake structure may be modified by the strong interference pres-
ent in small-tunnel high-1ift tests. Though Hackett and Evans (ref. 8) have
demonstrated the effect theoretically for unpowered cases, little can be found
in the literature concerning tunnel-induced distortion of powered wakes like
the present one. Accordingly, a careful study was made to try to detect this,
in comparisons between ''small' (30" x 42") and ''large' (7' x10') tunnel tests
under closely controlled conditions using the same model and the same rake of
five-hole probes.

Figure 4.3 is a "tuft grid" vector diagram of the flow velocities just
aft of the tail position for the configuration with tips. Though the traverse
plane is 3.88 chords aft of the wing quarter-chord, the tip vortex has moved
inward and the flap vortex has moved downward by a considerable distance. It
is also noted that the cross flow vector velocity exceeds the mainstream
velocity in several places. This was even more pronounced with tips absent.
With the flow at more than 40 degrees from the probe axis (which was horizon-
tal), the calibration range is exceeded and reliable readings are not possible.
‘"Holes'' appear in the data surrounding the vortex centers, and cross-flow
vectors cannot be used to find accurate vortex centers in the manner of Figure

4.3,

After a fairly exhaustive investigation, the technique illustrated in
Figure 4.4 was found the best for finding vortex centers. This particular
plot is used to find the spanwise position. The method relies upon the fact
that there is no change in upwash angle along a vertical line passing through
a vortex center. As successive plots are made moving outboard, first negative
peaks (downwash) are found and then the profile ""flips through'' the positive,
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upwash side. The vortex center is defined to be at the span position for
"flip through." An estimated accuracy of +2% of powered semispan was obtained.

It is evident that an estimate of the vortex center altitude may also be
made from Figure 4.4, by locating the positions for peak upwash and downwash.
However, such estimates usually depend upon data several inches from the
vortex and have been found less reliable. Plots of sidewash angle against
span position, for various altitudes, were made; and the vortex altitudes were
found by detecting '"flip through' in a very similar manner. A further advan-
tage of the above method is that it permits the direction of the vortex axis
to be estimated. 1In Figure 4.4, for example, it may be seen that the vortex
axis is inclined downwards by about ten degrees. (This is the approximately
constant downwash value at the 0.85 station.)

Figure 4.5 represents the output of some twenty upwash diagrams like

Figure 4.4 and twenty sidewash diagrams. Figure 4.6 is the corresponding tab-
"ulated data. For the basic configuration (with or without tail), any differ-
ences between large and small tunnels are within the bounds of experimental
error at Cu s of 0.4 and 1.0. However, at C of 3 the vortex has penetrated
5% of powered span deeper into the larger tunnel i.e. 10% of absolute dis-
tance. The possible implications of this will be discussed below. With wing
tips fitted, both tip and flap-end vortices were consistently about 3% of
powered semispan inboard for the smaller tunnel; the reason for this is not
known. There is again a slight tendency for greater vertical penetration in
the larger tunnel, but unfortunately the traverses in the small tunnel did not
extend sufficiently far to pick up the flap-end vortex.

At the highest Cy for which traverses were made (C =3, a=0), the inter-
ference-induced vortex movement in the small tunnel was about 0.05 times the
powered semispan. This subtends an angle of about 1.8 degrees at the wing
quarter chord. Expressing this crudely, we may say that the wake has responded
to an apparent upwash angle of 1.8°. 1In correcting the results via Maskell's
method (see later), a tunnel-induced upwash angle of 2.3° is indicated at the
wing quarter chord, a value which increases going aft. Evidently, the wake in
the small tunnel has failed to respond completely to the tunnel-induced upwash.
in the tunnel-corrected, rotated coordinate system, the wake penetration into
the mainstream is therefore too great by a small amount. This is evidently due
to the ''stiffness'' of the powered sheet failing to respond to tunnel-induced
upwash. Fortunately, the changes involved are too small to affect the wing
basic performance significantly. However, further analyses will be made con-
cerning the tailplane.

4.2 Flow Near the Tailplane Position

Though the tailplane section was chosen for a high stalling angle at the
test Reynolds number, it turned out in practice that a single setting angle was
insufficient to provide unstalled operation throughout the range of test condi-
tions. An inverted slat should have been fitted. Figure 4.7, which was pre-
pared from tuft observations on the tail upper and lower surfaces, shows the
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positive stall to negative-stall domains for tail setting angles of 0° and 20°
nose up (inverted section). The latter is preferable for center-tunnel test-
ing since the range '"B" (Figure 4.7) is better placed than range "A." A review
of total pressures at x/c=3.88 and mid-semispan showed that the altitude of
the center of the wing wake was at 2z/b=-0.25, -0.45, and -0.65 at C, values
of 0.4, 1.0, and 3.0, respectively. At zero incidence, the viscous wing wake
did not interfere with the tailplane under these conditions. It was also noted
that the total pressure profiles near the tail altitude at its mid-semispan
(2y/b=0.25) were almost identical in large and small tunnels.

Figure 4.8 shows upwash distributions just aft of the tail position, at
the tail altitude. Some scatter is present because adjacent points correspond
to different probes. Concentrating first on tail-off conditions (nontagged
points), we note fair agreement between large and small-tunnel results. No
systematic upwash increase (by Aa) is noted in the small tunnel. Due to an
oversight, the small tunnel flow tests were made with a tail setting angle, iy,
of zero rather than intended 20 degrees nose-up nf the large tunnel test. In
a tail-off flow field of -20° (Cp==0.h), the tail was probably very close to
maximum 1ift, which occurs at a quoted sectional angle of 19°. The strong up-
wash effect (tagged open points) indicates that the tail was still performing
well. This contrasts with the corresponding small-tunnel, €y =3.0, case where
the tail had obviously stalled and good data could not be obtained in its
wake. The tagged filled symbols imply that there was less tail 1ift in the
larger tunnel with the increased setting angle, but the tail remained un-
stalled at C, =3.0.

Figure 4.9 shows spanwise distributions of upwash for the configuration
with tips, tail off. In this case, systematic changes in upwash were present
in the smaller tunnel, and there was also an inboard shift as noted in the
discussion of vortex centers. A substantially increased upwash change was
observed in the small tunnel, between 2y/b=1.0 and the tip. Since the tip
vortex is close to this altitude, it may be inferred that the tip vortex is
somewhat stronger in the smaller tunnel. This is consistent with an increase
in tip load due to wall proximity effects.

The calculated small-tunnel induced upwash at the wing position was 2.0°,
2.5°, and 3.5° for the increasing Cy's shown in Figure 4.9. Up to twice these
values should be expected at the tail position. At the inboard positions the
differences between the two tunnels fall approximately within the expected
ranges. These differences diminished outboard due to the influence of the
stronger tip vortex in the smaller tunnel.

The downwash at the tailplane position was changed very little by the
addition of wing tips.
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4.3 Wing Aerodynamics

At very high blowing levels, maximum 1ift is limited not only by viscous
separation but also by the potential flow phenomenon of "limit lift" in three
dimensions. At very high lift coefficients the trailing vortex sheet is
swept downward sufficiently for it to induce a significant forward velocity
at the wing, as well as the downwash usually considered. This reduces the
apparent forward speed at the wing and consequently less lift can be generated
from a given circulation. Maximum attainable 1ift coefficieat is quoted by
various authors at values ranging from 0.9 to 1.9 times aspect ratio, depend-
ing upon theoretical assumptions. Braden and Barnett (ref. 9) have analyzed
some of the present data, using an advanced limit lift analysis for powered
flows and quote the results shown in Figure 4.10. There is quite close
correspondence between experimental 1ift maxima and the predicted limit 1ift
envelope. The fact- that the experimental performance improves in relation to
predictions at higher blowing momentum coefficients is most likely due to
augmentation caused by entrainment into the powered flow over the flap. This
was demenstrated by Hackett and Lyman (ref. 10).

The significance in achieving limit 1ift lies in the fact that, if the
tunnel corrections work under these conditions, no more severe test for them
can be found.

Careful tuft studies were made in an attempt to detect any differences in
the conditions for stall, or in its nature, in the large and small tunnels.
Figure 4.11 sketches typical separation patterns for the basic and tipped con-
figurations, with slats. The basic configuration is characterized by an aft
root stall which propagates outwards. With tips, a forward stall starts just
inboard of the flap end and propagates in both directions. {In both cases a
region just ahead of the flap knee stays strongly attached long after the
remainder of the wing is fully separated. This is evidently due to entrain-
ment into the knee-blowing jet and is particularly notable at very high Cy's.

Figure 4.12(a) shows conditions for the start of wing flow separation and
for fully separated wing flow for the basic configuration in the two wind
tunnels. At Cy's of 0.4 and above, the flap never separated in the sense that
wool tufts were disturbed. However, it was noted that the mixing layer thick-
ened considerably as the wing flow separated. This is probably related to the
tendency for entrainment into the knee jet to suppress separation just ahead
of it. At low Cy, separation tended to start sooner in the smaller tunnel but
between C,'s of 1 and 2 this trend reversed. Full separation generally
occurred earlier in the smaller tunnel. Figure 4.12(b) shows large-tunnel
separation loci for the configuration with tips.
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5. WIND TUNNEL INTERFERENCE STUDIES: “PRODUCTION" RUNS

5.1 Wind Tunnel Correction Equations

Hackett and Boles (ref. 4) quote the following equations which include
both image constraint and blockage effects.

b= TR ©) O (5.1)
ACL =~ CL %ACPZ - Cp Aa (5.2)
ACp = - Cp #ACp + C Ao (5.3)
aC, = - C, ECH, (5.4)

where 6 is the conventional incidence correction factor commonly applied with-
out the denominator in Equation (5.1). S/C; is the ratio of model reference
area to tunnel cross-sectional area. The denominator term in (5.1) is sug-
gested by Williams and Butler (ref. 11) and provides correction for tunnel-
induced increases in jet-sheet curvature. Though Reference 11 also suggests
related corrections to Cy, these make linear assumptions about angles which
are violated in the present experiments and unreasonable corrections are
obtained.

The Cp Ao term in Equation (5.2) is frequently discarded. However, both
Cp and Aa can be large in the present experiments and their product cannot be
ignored.

AC is the model-induced change in the difference between static pres-
sures far upstream and far downstream of the model. Since the present experi-
ments were run at ''corrected q'" (see Section 3), the ACp2 terms are already
incorporated in the test results as run. Equations (5.2) "to (5.4) then reduce

to
ACL = = Cp Aa (5.5)
ACp = + CL Aa (5.6)
and AC, =0 (5.7)

A conventional streamline curvature correction [see Pope (ref. 12)] was
applied to pitching moments in tail-on cases.
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In order to assess the relative importance of the wind tunnel blockage
and the image constraint corrections and also perform a definitive check on
the "automatic gq'' system, several runs were made with the system off and
Equations (5.2) to (5.4) were applied. Figure 5.1 shows both the corrections
and a comparison with other results taken with the automatic system in opera-
tion. In producing the former curve (diamonds) it was necessary to cross
plot to obtain 'whole' Cy values. This is what makes on-line correction so
valuable. There is good agreement between the two methods (circles versus
squares), though the stall appears somewhat earlier on one run with the auto-
matic system working.

The breakdown of corrections shows very large C; reductions when the
blockage correction is applied (triangles versus diamonds). Image corrections,
also, are by nc means negligible. The results shown also indicate that the
repeatability between runs is quite good in the small wind tunnel.

5.2 General Comments

To place between-tunnel comparisons in proper perspective, some brief
comments will be made about overall model performance in various configura-
tions, based on large-tunnel results. Throughout, it should be borne in mind
that the C_ range up to ten is of greater practical interest than beyond ten.

Lift curve slopes for the basic and the tips-off configuration have the
expected values for the respective aspect ratios at the lower blowing rates,
bt decline significantly at high Cy: a limit-lift effect. At low angles of
~ttack removal of inboard slats has little effect on 1ift, but drops the angle
tor Cp ... from about 25° (C, 21) to 10°. However, the subsequent decline is
less precipitous at Cy's greater than two. In the large tunnel, drag is
little affected by slat removal.

Though the addition of tips adds only about two to C| at zero angle of
attack (same reference area), there is a marked improvement in lift curve
slope, and there are significant gains in Clpax in the ten-Cp range. There
is a tendency for somewhat earlier stall than ?or the basic configuration
here. Though total drag levels are high, a line for L/D of five passes
through the middle of the polar data in most tipped cases.

5.3 Test Results for Basic Configuration§ (A1 and F)

Figure 5.2(a) shows excellent agreement in 1ift measurements between
large and small wind tunnels over almost all of the test range. There are
slight differences at C,=0.2, where flap BLC may be marginal, and a signifi-
cant change at C, =1.0, where the stall is much earlier in the smaller tunnel.
This phenomenon, which also occurs to a lessening degree at Cu‘s of 8 and 6,
will be discussed further in Section 5.6. Though impingement was noted in
the small tunnel (Figure 4.1) in the two-to-three C, range, this is not
reflected in the 1ift data. Small-tunnel drag data, Figure 5.2(b), agrees
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well with the large tunnel, the exceptions reflect the Ci deviations already
noted. Pitching moment data [Figure 5.2(c)] shows a general pitch-down ten-
dency in the smaller tunnel at high Cn's. A likely explanation is reduced
downwash over the aft fuselage in the small tunnel. There is also a stronger
pitch-up associated with the earlier stall in the smaller tunnel.

Overall, there is remarkable agreement between tunnels for configuration
A1, particularly in the C_ range up to 10.

Configuration F corresponds to the basic A1 configuration with the slat
removed. Figure 5.3(a) again shows excellent 1ift agreement up to a C; of 4
(CL=10), but systematic "humpiness' in the C_ ~a curves thereafter. A
glance at the drag data [Figure 5.3(b)] shows that striking changes have
occurred with the model in the small tunnel. The drag curves have been moved
bodily to the left (more thrust) by about 0.6 C; in the higher ranges. Though
direct evidence is sparse, it is believed that small tunnel effects, with the
slat absent and a wing leading edge separation, cause severe thickening of
the powered flow over the flap, though without fully separating it in the
conventional sense. This could explain the fact that there was no lift loss
since, at the higher angle of attack the direct thrust resultant would swing
from slightly forward of the vertical to aft of it. A vector change of up to
30 degrees to the rear is implied by the increase in forward thrust. Once
again, pitching moments agree reasonably well between the two tunnels,
[Figure 5.3(c)] up to a C_ of about 10. Beyond this, pitch down in the small
tunnel coincides with the above drag effects.

The reasons for the dramatic drag changes, clearly associated with lead-
ing edge separation, which affect small tunnel but not large tunnel perfor-
mance, can only be speculated upon. More rapid jet turning in the small
tunnel necessitates a lower pressure above the jet just aft of the wing and
it is possible that this affects the flap separation either directly or via
modification to the wing separation bubble. It is also possible that un-
steadiness, either model or moving-ground induced, may have altered the
structure of the separation bubble. Calculations show that steady, blockage-
induced changes in bubble pressure are unlikely to have been a significant
factor. Again, there is a chance that differing test techniques in the two
tunnels may have played a part, but this is thought unlikely. Since lift is
maintained, it appears unlikely that the differences are related to 'q'
changes due to blockage or the associated corrections. Further tests in the
small tunnel appear desirable to trace possible reasons for the strong
sensitivity to flow separation.

Except for the worsening drag correlation beyond Ci =4, there is good
agreement between tunnels for configuration F up to C =10.

5.4 Configurations with Tips (B, G, and E)

In order to facilitate comparisons with the basic configurations, the
same reference area is used in this section as in the previous ones. Since
the basic reference dimensions are 50.8 x 10.16 cm (20" x4'') and the
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appropriate tipped configuration dimensions are 76.2x12.7 cm (30" x5"), the
lift, drag, and C;, values should be multiplied by 8/15 to convert them to the
full reference area. We shall use the latter in the summary descriptions
(Section 5.6) to provide better overall perspective.

For all slat combinations there is again very good lift correlation
between tunnels at zero and low Cy values [see Figures 5.4(a), 5.5(a), 5.6(a)]
with a tendency for a later stall in the smaller tunnel. With full-span slats
[Figure 5.4(a)] and higher Cy's 1ift tends to be 5% low in the smaller tunnel.
Examination of the drag polar, in the mid-range Ci region (around 14) indi-
cates a possibility of over-correction for blockage, since comparable points
lie close to common radial lines. This could be caused by the tooc-short
working section not permitting the asymptotic pressure .to be reached prior to
the breather, for the present large model. This would cause the automatic
sensing system to over-correct the tunnel 'q' (see Section 5.7). Up to the
mid-range of C|'s, there is good agreement in stall incidence [Figure 5.4(a)].
Beyond this, stall occurs increasingly early in the small tunnel as C;
increases to its maximum. The drag characteristics for C;'s of 8 and 10
[Figure 5.4(b)] display almost the same radical changes due to separated wing
flow in the small tunnel as were noted for basic slats-off configuration.

Once again, these are accompanied by a deterioration in the pitching moment
correlation [Figure 5.4(c)]. The removal of the outboard slat (configuration
C) does not change the 1ift comparison between tunnels very significantly

[see Figure 5.4(a) and 5.5(a)] so far as the stall is concerned. There is a
definite improvement in two-tunnel agreement at the highest C,'s; however,
inspection of the drag polar [Figure 5.5(b)] suggests this is fortuitous

since separation effects appear to have caused some direct thrust vectoring
once again. The familiar pitch-down at high C,, separated flow conditions is
again evident [Figure 5.5(c)]. Nevertheless tﬁe correlation of all components
is fairly good for all except the highest C,'s.

Finally, we turn to configuration E, which has outboard slats replaced,
and inboard slats removed. After reasonable low Cy comparisons, the expected
separation effects again dominate, lift is somewhat low and exhibits some
scatter [Figure 5.6(a)] while still correlating tolerably well. However,
large drag shifts [Figure 5.6(b)] again suggest thrust revectoring when flow
ahead of the flap knee is separated. Pitch down again occurs after good
correlations up to C_ =12 [Figure 5.6(c)].

5.5 Tailpiane Effects

Tail-on force runs were made in both tunnels. However, the small-tunnel
runs were inadvertently made at zero-degrees tail setting angle, rather than
the recommended 20 degrees used at AAMRDL. Since this makes two-tunnel
comparisons difficult, only the fully slatted configurations (A1, A2, B and C)
will be discussed.

In the pitching moment plots of Figure 5.7, it is evident that there is

generally good agreement between wind tunnels for the basic model tail-off,
with some pitch-down deviations at high C,. Figure 4.8 suggest some reduction
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of downwash in the smaller tunnel at C, =3, and it is plausible that this re-
shaping of the flow becomes increasing#y noticeable at high Cy. However, in
the medium CpL range of interest tail-off pitching moments agree well.

A review of flow angle data (Figure 4.8) shows that the tail set at 20
degrees is probably fairly well aligned with the local flow at low C, in the
large tunnel and is driven towards negative stall with increasing angle of
attack. This is confirmed by the results of tuft studies (Figure 4.7). At
low angle of attack and low Cy the tail should be unstalled in both tunnels
and differences should then reflect a 20-degree difference in incidence.
Since the tail volume ratio is unity and the sectional CLpax is quoted as 1. 6
at 20-degrees angle of attack, a pitching moment lncrement somewhat less than
this should be expected, and this is the case.

As C, is increased, tail-on pitching moment differences continue to
reflect tail-off trends. However, at C;, =2, the tail is evidently fairly well
within its working range in both tunnels, and very good agreement in the
trends is evident when allowance is made for the differing setting angles. As
Cu is increased further, tail stall occurs in the smaller tunnel (i.e. lower
surface separated) and comparisons are no longer meaningful.

When the tailplane was unstalled, the present results show a general
consistency between tunnels for the basic configuration, and a good reproduc-
tion of large-tunnel trends is obtained in the small tunnel.

Figure 5.8, for the configuration with tips, shows most of the features
discussed above. Two others are also apparent. Firstly, the generally lower
force trends, seen at higher C,'s, appear again in the pitching moment data.
Secondly, the effects of premature small tunnel wing stall also become evident
at high Cy.

Subject to the above comments, we see that trends are reproduced quite
well in the smaller tunnel for the tipped configuration. The overall force
and moment reduction in the small tunnel is the main shortcoming. This will
be discussed in Section 5.7.

5.6 Review of Force and Moment Results in Two Tunnels

We see from the previous results, summarized in Figures 5.9 and 5.10 that,
for both basic and tipped configurations with or without slats, there are no
serious differences between the corrected small tunnel results and large
tunnel results unpowered or with power applied in approximately BLC quantities.

The above remains true in the normally accepted STOL CL range with two
qualifications. Firstly, there is a tendency for forces and moments to be
too low in the small tunnel under mildly stalled conditions (basic model) and
under most conditions for the model with tips fitted. This appears to be a
g-correction problem. The second effect is more serious. At CL's greater than
5 (on gross tipped area) or 9 (for the basic wing), there is evidently a radi-
cal change in the basic flow when the wing stalls, either at high angie of
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attack or due to the absence of slats. This is thought to involve a rapid
thickening of the powered flap fiow, and a consequent aft revectoring of the
jet sheet. As a result, the drag drops by about 60% of C, and lift data
exhibit increased scatter, though without any overall reduction. Possible
reasons for the g-reduction and for the stall-induced revectoring phenomena
will be discussed below.

Though the very high C_-range is of little practical interest, it con-
firms the above trends by virtue of their amplification as power and Ci
levels increase. The same general comments apply to lift and moment while
drag correlation remains reasonable except under stalled conditions. However,
when stall is present, the small tunnel flow i's evidently changed so radically
that the small tunnel results should be considered worthless.

5.7 Discussion of Wind Tunnel Blockage Corrections

The above results show that the boundaries for using wake blockage cor-
rections” while ignoring solid/bubble blockage have been defined rather sharply
in the present tests, thus achieving a major objective. It remains to discuss
the flow mechanisms which lead to over-correcting 'q' and to the stall-induced
revectoring phenomenon.

Figure 5.11(a) sketches a static pressure distribution along a wind
tunnel wall which might be induced by a model exhibiting wholly viscous drag.
Due to the positive wake thickness the flow speeds up on passing the model and
the static pressure drops. Eventually an asymptotic value is reached far
downstream. This is the value desired for blockage estimation. In practice,
the working section is truncated at upstream and downstream ends and a lower
value of ACp, will be returned by the data system, leading to an under-
correction for blockage. The monotonic pressure signature [5.11(a)] is
approximated by a clean, unstalled model which has low structural volume, such
as the present one prior to stall.

Figure 5.11(b) shows a wall pressure signature more typical of a separated
flow, possibly a normal flat plate (ref. 5) or a stalled wing. A bell-shaped
symmetrical curve is added to the previous one, centered at a position opposite
to the maximum bubble diameter, i.e. just aft of the model. It is clear from
the figure that the measured value of ACp_  greatly exceeds the true value and
the wake blockage correction will be correspondingly high.

it appears possible that the additi~n of wing tips to the present model
introduced a solid and wake blockage effect close to the wall in a way somewhat
like that described above. Because of the short working section, the wake may
not have ovalized sufficiently prior to the breather. Another possibility is
that wall static pressures in the vicinity of the breathers, which comprised
rather restricted vertical slots, were reduced by the close proximity of the vortex
system. Since the force estimates in the smaller tunnel are a consistent per-
centage low, it is clear that overcorrection has not resulted in serious flow
changes, though the actual Cy values will be slightly higher than those quoted.
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So far, we have discussed blockage aerodynamics as if after-the-event
corrections were being made. The same arguments apply for the "automatic q'
system used in the present test provided that total blockage is not over-
estimated. Some overcorrection is permissible to make up the difference be-
tween wake and total blockage. However, if solid/bubble blockage is suffi-
cieatly high, the possibility arises of '"positive feedback' and consequent
divergence of the system towards zero forward speed. Whether this occurs
depends upon the response of the model aerodynamics to decrease in forward
speed.

The possibility of the above overcorrection suggests firstly that con-
siderable caution should be exercised in interpreting beyond-stall results
and secondly that, once stall occurs, on-line 'q' correction should be
abandoned. Eventually, it is hoped that it will be possible to analyze
signatures like that of Figure 5.11(b) and obtain total blockage estimates
from wall pressures. This will avoid the above problems. The first steps
towards this goal are being taken in a Lockheed-Georgia in-house program.
The first step in this program is to lengthen the test section.
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6. GROUND EFFECTS EXPERIMENTS: INTRODUCTION

6.1 Determination of Ground-Blowing Requirements

To put the present tests into perspective, we shall review briefly the
pilot tests described in Reference 2. These involved wing and flap surface
static pressures measured at three spanwise stations for various ground boun-
dary layer control blowing ratios and with a moving ground. Figure 6.1(a)
shows undersurface distributions for a model height, h/c, of 0.75. These
reflect the presence of the strong vortex, trapped between the wing and the
ground, shown in Figure 1.2. It is evident that the vortex is much larger
for the fixed ground (crosses) than for the moving ground (circles). At a
particular rate of ground blowing, a very good match to the moving ground
result is obtained. The height and C; combination chosen for Figure 6.1(a)
is one of the most extreme.

Figure 6.1(b) shows results of other, less extreme conditions and in-
cludes an illustration of the effect of slot size. The standard larger size
used for the majority of previous tests was retained in the present work.

In the previous work (ref. 2), upper and lower surface pressure distri-
butions, for the three stations shown in Figure 6.1(a), were integrated to
give local 1ift coefficient values. Typical sectional 1lift curves are shown
in Figure 6.2 for various levels of ground blowing defined by a parameter 'N'.
This parameter, derived theoretically by Hackett et al (ref. 1) relates the
wall jet velocity at its origin to the counter flow at the floor induced by
the bound vortex and its image. Corresponding values of slot blowing momentum
coefficient are shown in Figure 6.3, which represents the state-of-the-art
recommendations at the outset of the present work.

To accommodate a model altitude of two chords, not tested previously, the
slot position was changed from 2 to 2% chords ahead.of the model and revised
blowing curves were needed, both for this reason and because the present model
had greatly reduced slot height compared with the previous tests. The use of
a force balance in the present tests considerably simplified the process of
finding floor blowing requirements. Figure 6.4 is an example of numerous
varying BLC force measurements, used to redefine the blowing requirements
curve. In this particular case, good results are possible over a fairly broad
blowing range. However, in other cases, the 1ift overshot more substantially
before turning down. Under extreme model C; and incidence conditions, there
was no lift maximum within the ground blowing range tested.

Figure 6.5 shows the previous slot blowing requirement for one chord
altitude (lower curve) together with a revised curve, for the further forward
slot, derived from force tests. These curves are not strictly comparable on
a Cyp, basis, because of differences between pressure-derived and measured lift
definitions. The latter are generally about 0.5 in C lower than the previous
estimate, which would move the NASA CR curve into closer agreement with the
"present results'' curve at the upper end.

22



Since the philosophy behind the original definition of required blowing
quantity (Figure 6.3) was founded upon sectional considerations at the most
critical span station (usually the center), the selection of blowing quantities
for the tipped configuration was not straightforward. For example, it was felt
that power effects would continue to dominate the center of the wing, and these
would be little affected by the addition of wire tips particularly at the most-
critical, high Cy conditions. Straightforward application of measured 1ift
coefficients to the requirements curve (Figure 6.5) would therefore result in
excessive ground blowing. 7o avoid this, it was decided to compromise and
apply the same ground blowing rates, at any particular C, and o combination, as
were used with no tips fitted. The use of ground plane instrumentation made it
possible to check the validity of this approach.

At two chords altitude, the same general principles were applied. Since
Cop typically had half its previous value, the slot was blown at unit pressure
ratio at the lower model Cu's. The floor €, was below 0.2 over the entire
test range.

A retrospective analysis showed that, tips off, the actual floor blowing
quantities followed the ''present results' curve (Figure 6.5) up to a model Cy
of 1.0, but then tended to drop off and follow the ''NASA CR" line. At higher
mode Cu's, the actual floor blowing quantities fall below both of the recom-
mended values by up to 20%.

" 6.2 Skin Friction at the Ground

Figure 6.6(a) shows results typical of numerous skin friction measure-
ments recently analyzed. Since the purpose of the Preston tube/static pressure
measurements is only to identify separation, the full skin friction calibration
was not applied. Instead, indicated Preston tube and static pressures are
plotted. On the upper plot, the total (Preston) reading always remains sub-
stantially above the static value, indicating the absence of separation. In
the middle plot, the two tend towards the same value: separation is imminent.
Finaily, in the lowest plot the two curves cross and the separation point may
be estimated.

In a deeper review of the data used to generate blowing requirements from
1ift considerations (e.g. Figure 6.4), the technique of Figure 6.6(a) was used
to estimate test conditions under which ground separation was present with the
blowing settings used in production runs. Figure 6.6(b) is the result. This
shows that ground separation occurred at high incidence and high model C, con-
ditions at both test altitudes, with or without tips fitted. The fact that
the with-tips curves are close to the respective basic configuration curves
confirms that the same ground blowing C, is required for both.

It is seen above that less-than-recommended floor BLC was applied at C, =2
and 3, and the lower part of the separation boundary probably could be improved
by rectifying this.
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6.3 Tailplane Setting Angle

In the present tests the tail is intended as a flow sensing and integrat-
ing device, and there is no emphasis on trim. The prime requirement is there-
fore to maintain attached flow so that if flow angle changes occur between
moving and BLC ground tests, these are sensed by the tail and recorded as
pitching moment changes. Care was therefore taken to maintain attached flow
on the tailplane over as much as possible of the test range.

Since no slat was fitted to the tailplane, it was recognized that a com-
promise setting angle would be needed which would not necessarily correspond,
in ground effect, to the angle selected for center tunnel tests. The very
extreme flow angles found near the tail position in the latter case (e.g.
Figure 4.8) clearly cannot persist as the tail approaches the ground closely.
To establish the best setting angle, the tail was tufted and moving ground
runs were carried out over the test ranges of model height, blowing, and
incidence. Because of ground proximity, it was possible to observe only the
upper surface of the tail, permitting only negative sectional stall to be
detected. Tail setting angle of 0°, 10°, and 20° (nose up) were reviewed.

Figure 6.7(a) shows that the zero degrees setting angle was preferable at
one chord altitude. This restricted the negative stall to the last few degrees
of the model angle of attack range. Figure 6.7(b) shows this remained true at
two chords altitude at low model C,,. The above selection of tail setting angle
was later confirmed by flow measurements (see below).

6.4 Flow Measurements Near the Tail Position

Because of emphasis in the present tests on pitching moment, it was
decided to supplement the tail-on/tail-off experiments by three-component flow
measurements, just aft of the model, with the tail removed. These were carried
out with the probe mounted in a position extending from the tail-tip position
inboard (see Figure 6.8) and at an altitude corresponding to the tail quarter-
chord position at the model angle of attack concerned. This '"tail-following"
technique was carried out with the probe rake horizontal. Boundary layer rake
data were also collected in a similar position (Figure 6.8) but were not found
very useful.

Figure 6.9 shows downwash angles and dynamic pressures plotted as contour
maps. with span positions as ordinates and model angles of attack as abscissae.
This form permits comparisons with pitching moment plots in the main results.
As would be expected at low altitudes (upper plots), the flow angle tends to
zero with angle of attack increase and angle 'seen' by the tail section is
consequently beyond the negative stall. Zero tail angle of attack (moving
ground) is achieved at a model angle of attack of about 8° for C,=0.4 and
1.0 and 5° at Cu=3. (These angles combine angle of attack, tail incidence
setting, and downwash angle.) There appears to be very little chance of posi-
tive sectional stall at one chord altitude: On the other hand, tail loads are
not large.
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In comparing moving and boundary layer controlled ground resuits, we note
first a tendency for more upflow near the fuselage side (situated at the 0.088
station) in the latter case. This tendency reduces at the higher Cy values.
As might be anticipated, there is some correlation between tail flow angles
with a biown ground and the occurrence of ground separation, denoted by
crosses in Figure 6.9. This is particularly clear at €, =3.0, where there is
a much more rapid decrease in downwash for the BLC ground which starts a few
degrees beyond the angle of attack for floor separation (see filled circles).
This would be beyond the test range at C,=1.0, but the reason for the rapid
changes at Cu==0.4 has not been determined.

In view of the reduced downwash above these high gradient bands, a more
nose-down pitching moment should be expected for the BLC ground cases at high
angles of attack.

The downwash distributions for the two-chord-altitude cases are charac-
terized by strong spanwise increases in downwash as well as the previously
mentioned fuselage effects. The former are sufficient to precipitate tip
stall in the higher C, range. There is better general agreement between BLC
and moving ground at two-chords altitude and the rapid gradient changes noted
above were not observed.

Because of calibration difficulties, the relative dynamic pressure results
are regarded as less reliable in an absolute sense. However, the comparisons
between fixed and moving ground indicate quite good agreement except above the
previously mentioned strong gradient areas, where dynamic pressure effects
appear to be consistent with the observed downwash values.

6.5 Limit Lift in Ground Effect

We saw in Section 4.3 that circulation 1ift may be bounded by three-
dimensional effects associated with the downsweep of the tailing vortex system.
In ground effect, an analogous effect can occur, but in this case the counter-
flow at the wing bound vortex is induced by its image in the plane of the
ground. This phenomenon is examined theoretically in some detail in Reference
1, where it is shown that Cg c/h cannot exceed 21 in two dimensions or 41 for
a semi-infinite vortex (which may approximate the tip region). Very signifi-
cantly, this 1ift must be accompanied by a trapped under-wing bubble which
extends forward and aft at the ground by a distance h. As 1ift reduces to 1.57
(=4.71), the two stagnation points merge and further reduction permits main-
stream flow beneath the wing once again. Though the theoretical model employs
a point vortex, it provides a useful insight into the inevitability of ground
separation as wing lift is increased near to the ground. A moving ground
should guarantee that the trapped bubble has the same dimensions as in flight,
which is also the aspiration of the boundary layer controlled ground.

Figure 6.10 provides a preview of moving ground results obtained in

"]oroduction'' tests. The free-air result shows decreasing returns in circula-
tion lift as C, is increased to the highest values. However, the effect is
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not noticeable up to a C, of six. At h/c =2, on the other hand, there are
definite signs of bunching at a C, of three while at one-chord height, all
three upper curves have reached a plateau in circulation lift. Limit circu-
lation 1ift appears to occur at a lift coefficient of about four.

Examination of wing undersurface pressure distributions at the 0.643
station (Ref. 2, Figures 23 and 24) reveals that a mild undersurface suction
starts at a model C, of 1.0 (moving ground, h/c=1.0) leading to an extensive
forward stagnation and an apparent vortex bubble stretching from 40% chord
back to the flap at a Cu of 3.0.

It is apparent from the above that, once again, limit conditions are
being approached at the upper end of the test range. Under these conditions,
it is the purpose of ground BLC not only to prevent separation (in the sense
that the moving ground does) but also make the size of the vortex bubble
trapped below .~ wing the same as with the moving ground. It is the purpose
of the experimu+ .« described below to determine the extent to which this
difficult task can be accomplished.
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7. GROUND EFFECTS EXPERIMENTS: “PRODUCTION” RUNS

7.1 General Comments

In all of the near-ground experiments, the angle-of-attack range was
physically reduced, compared to center-tunnel tests, and a reduced C, range
wasz employed compatible with previous experiments (ref. 2). The range used,
to €, =3, was sufficient to ensure that ground-limited circulation lift was
encountered (Figure 6.10). These factors all reduced the total loads while,
at the same time, buffet-induced unsteadiness reduced the accuracy of the
data. The latter is liable to degrade drag accuracy, in particular, since a
0.1-degree angle-of-attack error translates to a drag coefficient error of
0.14 under typical ground testing conditions. The reduced drag range near
the ground also exposes the basic balance inaccuracies: One percent of the
axial force range represents approximately 0.14 in drag coefficient and the
drag component of 1 percent of the normal force range equals about half this
at 10-degrees angle of attack. Though airbridge tares are high, high-accuracy
pressure measurements restrict errors in their estimation to about 0.02 in C;.
One percent of full balance range lift and pitching moment coefficients each
convert to about 0.4 on the scales used for the basic model. 1t is evident
from the center-tunnel experiments that achieved repeatability was probably
noticeably better than the 1% full-scale values just quoted. However, this
probably will no longer be true under buffet conditions in ground effect.

Since the prime objective of the present tests was to compare moving and
BLC ground results, neither wind tunnel constraint nor blockage corrections
have been applied.

7.2 Lift and Drag in Ground Effect

Figure 7.1 shows 1ift curves for BLC (filled points) and moving ground
(open points) for the basic configuration at one chord altitude. Agreement is
generally within balance accuracy limits with certain exceptions which occur
after the floor Preston tubes sensed separation [Figure 6.6(b)]. At Cy=2,
the deviations slightly precede the quoted separation conditions.

With tips fitted to the model, Figure 7.2 shows very similar 1ift results
to those just described. It is evident, once again, that floor separation has
seriously degraded the higher C; results.

On raising the model to two-chords altitude, the proportion of the
separated-floor points is less, and overall 1ift agreement is significantly
improved for both configurations Al (Figure 7.3) and B (Figure 7.4). At two-
chords altitude, the limit-1ift effect (Figure 6.10) is lessened and dCy/da
increases markedly, particularly with tips fitted (Figure 7.4).
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Provided post-floor separation points are ignored, there is good lift
agreement between moving and blown ground results. There is no regular trend
for either to yield higher 1ift.

As indicated in Section 7.1, experimental accuracy in drag is not parti-
cularly good. |t may be seen from Figure 7.5 that, up to conditions corres-
ponding to floor separation, the BLC ground reproduces the moving ground trends
correctly for configuration Al at h/c=1, but at somewhat higher drag level.
Under separated floor conditions, which encompass most of the a-range for C,'s
of 2 and 3, poor correlation is obtained.

As may be expected from the increased aspect ratio (and particularly in
ground effect) adding tips reduces the drag quite noticeably (Figure 7.6). The
discrepancies under separated-floor conditions appear once again and the
general increase in drag with the blown ground is similar to before.

At two-chords altitude, incidence-dependent drag appears clearly associ-
ated with the increased 1ift curve slope. At the two lowest Cy values, drag
agreement for configuration Al remains acceptable (Fiqure 7.7) but is dis-
appointinc at higher settings.; The poor correlation of post-floor separation
results is expected but; prior to this, there appears to be an incidence-
related crossover between the moving and blown ground curves at about 12-
degrees angle of attack. A similar, but less noticeable, tendency is also
noted at unit chord altitude (Figure 7.5). Since it is at this angle of
attack that the flap upper surface approaches the vertical, it seems possible
that the changes in trend are provoked by jet air moving forward at ground
level, after impingement.

The tips-on drag comparison of Figure 7.8 shows quite poor agreement
between the two methods of ground treatment. This is quite surprising and
not understood, since the task of controlling the floor for the two-chords
altitude case should be easie. than for one chord. Several comments may be
made. It is evident, in both Figures 7.7 and 7.8, that there is more scatter
in the moving ground results. Secondly, a comparison between the blown-
ground drag results of Figures 7.7 and 7.8 and corresponding moving-ground
center-tunnel results shows excellent agreement in the trends with angle of
attack and slightly lower absolute values. |t is not known whether the theo-
retical drag of this configuration is starting to asymptote the free air value
at two chords altitude. The only conclusions that can be reached are that the
effect is significant and takes the form of a 1lift-dependent drag error which
tends to be independent of Cu in the range from 9.7 to 2.0. This suggests a
change in spanload shape, which occurs with no change in 1lift.

7.3 Pitching Moments Tail-off and Tail-on

We see from Figure 7.9 (basic configuration) and 7.10 (tipped configura-
tion) that, with one exception, there is excellent pitching moment agreement
between blown and moving belt results up to, and sometimes including sepa-
rated ground cases. The exception concerns the curves at Cuj=0.h (upper left,
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Figures 7.9 and 7.10). Pitch up ''"bumps' appear at 8° with fixed ground and
with BLC for the basic configuration, yet also (at 6°) with a moving ground
and the tipped configuration. There is also a smooth curve in each case —
one with the ground moving, the other boundary-layer controlled. The reason
for this apparently anomalous behavior is related to temporary wing separa-
tion, which in some cases was followed by a recovery and in other cases did
not occur until a higher angle of attack. It is noted that the ''bumps'' occur
near the wing Cy ... At the high C, levels all serious differences between
the two ground treatments are associated with under-blowing the BLC, and the
consequent floor separation. |In a number of cases, particularly for configu-
ration A1, agreement remained fairly acceptable even including C; =3.

At two-chords altitude (Figures 7.11 and 7.12), almost identical comments
apply, and agreement is particularly good in the with-tips cases.

7.4 Discussion

For the present series of experiments, ground blowing quantities were
determined by a continuation of previous philosophy (ref. 2) but employing
directly measured 1ift rather than undersurface pressures as a criterion. With
the exception of a high angle-of-attack/high Cy corner, these techniques were
successful and the use of Ci h/c as a determinant for blowing was validated.

Retrospective analysis of floor skin friction measurements showed that
the region just mentioned could have been avoided by feeding-back skin fric-
tion measurements in real time. One reason this was not done lay in the
recognition that, under some circumstances, floor separation may be a correct
state (see Figure 1.2). However, it is now recognized that the hazards of
overblowing and destroying the underwing vortex in a few cases are much less
than underblowing over a much broader spectrum of cases — which appears to
be the real alternative. For example, Figure 6.1(b) shows very little evidence
of a trapped vortex at one-chord altitude used in the present tests. |t is
therefore suggested that the possibility be considered of feeding back skin
friction data so as to control separation directly.

Figure 7.13 was developed by reanalyzing the varying-BLC data (e.g.
Figure 6.4) as if skin friction feedback had been employed. At lower model
C,'s, floor blowing pressures tend to be reduced, beyond floor separation
they are substantially increased. Analysis of the resulting lift coefficients
(lower table) is not very conclusive because much of the data available was
close to wing stall, and there were no examples of BLC blowing high enough
to prevent floor separation at the highest model blowing momentum coefficient.
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7.5 Tests with Simulated Strut Shrouds

The earlier tests (ref. 2) included wing undersurface pressure measure-
ments with a simulated underwing support strut shroud which cleared the wing
by 0.5 cm (0.2 inches). This was set at zero degrees and then at 45 degrees
to the mainstrgam, as indicated by floor tuft observations. Having a balance
made tests on a range of strut yaw angles feasible and tests were carried out,
with suitable simulated struts, with the wing at one- and two-chords altitude.
Configuration C was chosen for these tests because it has tips and tailplane
present and being fully slatted, it is the most representative of whole-
aircraft tests.,

Figures 7.14, 7.15, and 7.16 show lift, drag, and pitching moment,
respectively, for h/c=1. Careful comparisons of all these components with
the base, struts-out, runs are somewhat inconclusive regarding optimum strut
vaw at low C, but clearly indicate that the 45-degree setting is best at Cy=1
and above. Because of the floor separaticn at C, =3 previously mentioned,
there were some difficulties in analyzing these data. In cases of doubt,
particularly concerning pitching moment, a cross-check was made against moving
ground data.

At two chords altitude (Figures 7.17, 7.18, and 7.19), the low and the
high C, data were again somewhat inconclusive for similar reasons to before,
but overall checks indicated that toe-in settings of 15°, 30°, 45°, and 45°
were appropriate for low Cy's, 1, 2, and 3, respectively. In this higher
altitude case, the selection rested much more upon pitching moment (the tail
was on) than upon the other two components. Lift was scarcely affected by
toe-in.

7.6 Summary

Using the ground blowing techniques described in Section 6 and excluding
cases where floor blowing was insufficient to prevent separation (Figure 6.6),
good agreement was obtained with 1ift and pitching moments measured with a
moving ground for both tipped and basic configurations, tail-on and tail-off
at one~ and two-chords altitude.

Though drag measurements were subject to greater errors than 1ift and
pitch, a definite tendency was noted for higher drags to be recorded with the
blown ground. The reason for this is not known, but it is noted that the
errors are lift-dependent. It appears desirable to employ improved drag
instrumentation which would preferably measure true drag rather than axiai
force.

There is also a possibility noted from the drag measurements, that forward
spillage of jet air after impingement on the ground affects blown and moving
ground boundary layers differently. Under such circumstances, blown-ground
drag measurements should be regarded with caution.
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As was seen in Section 6, floor separation at the higher C,'s was largely
attributable to under-blowing the BLC. It is anticipated that significant
expansion of the useful C, ~o envelope would be possible via an appropriate
revision to blowing techniques with the inclusion of feedback from floor skin
friction measurements. Such feedback would enhance very considerably the
generality of blown-ground application.
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8. CONCLUSIONS

Large and small tunnel interference studies and ground effects experi-
ments have been carried out on a basic wing, with a full-span, highly deflected
knee-blown flap, spanning 48% of the small tunnel. Configuration variations
included the addition of unflapped tips, the use of a low-mounted tailplane,
and selective removal of the leading edge slats.

A moving ground, used as a datum for small tunnel ground effects studies,
was also run routinely in high lift, center tunnel experiments.

8.1 Wind Tunnel Interference Studies

Matched sets of high lift tests on the above model were carried out in
the Lockheed-Georgia 30" x 42" Low-Speed Wind Tunnel and in the NASA/AAMRDL
7' x 10! tunnel. Both flow and force investigations were carried out. Wake
blockage corrections, based upon working section exit and entry pressures
(ref. 4) were applied in real time to provide ''corrected q'' in the working
section. Tunnel induced angle-of-attack corrections were calculated using
the method given by Williams and Butler (ref. 11). The following conclusions
were reached:

5TOL-C Range (Up to 8 or 10)

1. The structure of the vortex wake is almost identical in the two
tunnels at a plane near the tail position. There is slightly less downward
penetration into the smaller tunnel, but the difference is consistent with
the flow rotation applied when correcting for tunnel image effects. The
present corrections to incidence therefore automatically accommodate the
effects of the observed small changes in wake penetration.

2. For the basic configuration, there was good correlation between
tunnels in corrected 1ift, drag and pitching moments up to CL =10 (see Figures
5.2 and 5.9).

3. With slatted tips added (see Figures 5.4 and 5.10), the large-tunnel
characteristics were faithfully reproduced in the small tunnel, up to C_ =8
(based on gross area). However, the forces and moments were about 5% low in
the upper part of this range. This is attributed to overcorrection for
blockage, caused by an insufficient settling length between the model and the
working section exit.

4. With the slats removed ahead of the forward flap (Figures 5.3 and
5.6), correlations were good only up to C_ =5 (either configuration). There~
after, a violent flow change appears to have occurred in the small tunnel
accompanied by gross reductions in drog, but with no significant lift changes.
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1t is surmised that flow thickening over the powered flap resulted in an
effective vectoring of up to 30 degrees aft, even though the flow was not
visibly separated (tufts).

Extra-High CL (8 to 10, plus)

5. At low angles of attack, slats-on, the agreement between tunnels was
similar to that described above. However, stall occurred increasingly early
in the small tunnel at Cy's of 6, 8, and 10, resulting in the same precipitous
drag changes as were observed slats-off. This was accompanied by pitch down.

6. With the slats off in the small tunnel, aft vectoring was immediate
in the extra-high 1ift range; and there was no correlation with the large-
tunnel results. Pitch-down again occurred and though there was some agreement
between 1ift values in the two tunnels, this is regarded as superficial.

7. There are reasons to suspect that the use of the '"blockage-corrected
q'' feedback amplified the post-stall effects via overcorrection. It is there-
fore recommended that 'q' should not be corrected on-line, via the present
system, when extensive separation is present ahead of a highly powered flap.

8. Some of the problems mentioned above may be attributable to the fact
that solid/bubble blockage is ignored in the present wake corrections. Exten-
sions to the present method have been demonstrated (ref. 5) which evaluate
solid/bubble blockage successfully. These may offer the opportunity to extend
automatic 'q' generation into the post-stall range.

8.2 Ground Effects Experiments

The proper ground BLC slot size, position, and blowing rate had been
derived in previous experiments (ref. 2) on the basis of measured airfoil
undersurface pressure distributions, which were matched to datum moving
ground values. Because of changes to model configuration and slot position
in the present tests, a new Floor blowing requirements curve was developed
(Figure 6.5) based on a lift-matching procedure (Figure 6.4). The resulting
curve was consistent with the previous one. It is noted that floor C,'s are
fairly modest compared to those applied at the model in any particular
situation. No tunnel corrections were applied.

A retrospective review of centerline ground skin friction measurements
taken during 'production'' tests showed that, at the highest C, value tested
(three) and at high incidence at Cy, =2, the floor flow was separated. [See
Figure 6.6(b).]

Because of the obvious opportunity for ground-blowing to influence the
flow near the floor behind the model, comprehensive flow surveys were made
using a ""tail-following'" technique. Flow downwash histories (with model angle
of attack) were found to be generally similar for the two types of ground
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except after the BLC floor had separated. The latter caused rapid downwash
reductions near the tail.

To provide a critical test, the tailplane was low-mounted. However,
because it was unslatted and because of high downwash gradients (even witii the
floor unseparated), it proved difficult to use effectively as a flow ssnsor.

With the above investigations as background, the following conclusions
were drawn from the ''production' ground-effects tests over a model C, range
of zero to 3.0:

1. In the absence of floor separation [Figure 6.6(b)], good 1ift cor-
relations were obtained between BLC and moving grounds for both basic and
tipped configurations at one- and two-chords altitude.

2. Drag appeared generally higher for the BLC ground. |t too became
uncorrelated under floor-separation conditions.

3. One-chord altitude drag measurements correlated better than for two
chords. However, the moving ground data showed unexpected trends with height
in the latter case.

L. At two-chords altitude and about twelve-degrees angle of attack, the
blown-ground drag crossed below the moving ground data. |t seems possible
that a differing interaction with impinging jet air is responsible.

5. With separated-floor cases once again excepted, pitching moments
correlated very well for both configurations and at both altitudes. This
includes faithful reproduction, by the blown ground, of some heavily kinked
pitching moment curves.

6. From the above, it is apparent that drag, rather than lift or pitch-
ing moment is more susceptible to differences in ground treatment. A more
accurate drag measurement technique is required than the present axial and
normal force balance.

7. The high-C,, high-a ''corner" for which separation occurs can un-
doubtedly be reduced or eliminated by revised blowing techniques. Recent
analyses of ground skin friction measurements suggest that these should be
moni tored routinely and used as input for the selection of ground blowing
rate.

8.3 Test with Simulated Support-Strut Shrouds

The availability of a sting supported model over a boundary layer con-
trolled ground provided an excellent opportunity to investigate strut-shroud-
induced interference forces at high lift. The use of toe-in to align the
strut with the local flow was of particular interest. The full tips-on,
slats-on, tail-on model configuration was chosen as being most representative.
Tests with typical strut shrouds (see Table |) yielded the following con-
clusions:
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1. For model Cy 21 the best compromise toe-in angle at unit chord
altitude was 45 degrees. Below unit C,, there was no particularly good
compromise.

2. Results at two-chords altitude were generally similar, but toe-in

angles for minimal shroud effects were 15°, 30°, 45°, and 45° for low Cy, and
Cy=1, 2, and 3, respectively.

8.4 Recommendations

On the basis of the preceding work, certain questions have been raised
and problem areas identified which lead to the following suggestions for in-
vestigations or improvements to test techniques:

Wind Tunnel Interference

1. A longer test section is required which will permit the separation-
bubble-induced suction peak at the tunnel wall to damp out prior to the tunnel
breather and diffuser entry. This will improve the accuracy of wake blockage
estimation, particularly for large, bluff and stalled models.

2. The reasons for the 'thrust revectoring'' phenomenon, encountered in
the small tunnel when there is separation ahead of the knee-blown flap, need
to be investigated further. Comparisons should be made between results from
"automatic q'' and conventional tests under these conditions.

3. Work should be carried out to augment the current wake blockage

techniques by introducing a solid blockage term (ref. 5), determined from
additional wall pressure measurements.

Ground Effects

1. Follow-up tests should be carried out using the same model, but with
increased ground blowing at the higher model Cy's. These shouid include feed-
back of ground skin friction information to determine blowing rate at the ground.

2. The two-chords altitude, moving-ground datum data should be checked.

3. Means for improving the accuracy of drag measurements should be
investigated. Ground effects investigations will benefit.

L. The use of a pitch-yaw rake fixed in the tail position should be
considered instead of the present techniques.
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10.

11.

12.
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TABLE 1

MODEL DIMENSIONS

Model is located at center tunnel, waterline 38.10 cm (15.00")
Fuselage:
length 31.55 cm (12.42")
maximum width L.46 cm (1.76')
maximum height 7.76 cm (3.06')
maximum cross section 30.30 cm? (4.70"2)
equivalent diameter 6.21 cm (2.44)
fineness ratio 5.08
balance centerline location
water line 4o.64 cm (16.00" "
butt line 0
Wing:
area 517.00 cm? (0.556 ft2)
aspect ratio (on nominal chord) 5.00
span 50.80 cm (20.00")
nominal chord (constant) 10.16 cm (4.00")
quarter chord water line 38.10 cm (15.00')
twist, sweep 0
Wing and Tips:
area 968.00 cm? (1.042 ft2)
aspect ratio (on nominal chord) 6.00
span 76.20 cm (30.00")
nominal chord 12.70 cm (5.00')
Leading Edge Slat
area (projected onto maximum chord)
wing only 103.00 cm? (0.111 ft2)
wing and tips 155.00 cm? (0.167 ft2)
span
wing only 50.80 cm (20.00")
wing and tips 76.20 cm (30.00")
chord {maximum) 2.03 cm (0.80')
slot width ' 0.127 cm (0.050')
deflection 80.00 degrees
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Trailing Edge Flap:

area (projected onto maximum chord)

span
chord (maximum)
slot width

deflection (wing chord to flap upper surface)

Tail:

area

aspect ratio

span

nominal chord (constant)

quarter chord location
station
water line

twist, sweep

struts (NACA 00 series):

tip chord
tip t/c

root chord
short strut

long strut
root t/c

short strut

long strut
span

short strut

long strut
area

short strut

long strut

nominal clearance beneath wing

Quarter~-Chord Location

streamwise
spanwise

Reference Point:

axial station
water line
butt line

35

234,00 cm? (0.252 ft2)
50.80 cm (20.00")
4,60 cm (1.81')
0.041 cm (0.016")

76.00 degrees

161.00 cm? (0.174 ft2)
L.00
25.40 cm (10.00")
6.35 cm (2.50')
33.34 cm (13.13")
28.10 cm (15.00")
0
6.03 cm (2.375')
0.189
7.29 cm (2.870")
9.39 cm (3.697")
0.169
0.135
6.10 cm (2.40")
16.26 cm (6.40")
41.00 cm? (0.175 ft2)
125.00 cm? (0.135 ft2)
3.18 cm (1.25%)

wing quarter chord
75% wing semi=-span

wing quarter chord
tunnel floor
axis of symmetry



APPENDIX

IMPLEMENTATION AND CALIBRATION
OF "BLOCKAGE CORRECTED g" SCHEME

The accepted correction to the dynamic pressure due to model blockage

is:
dc = Quc * 285 qyc t 2gy qy¢ (A1)
where qc = corrected dynamic pressure at model station
gyc = uncorrected dynamic pressure at model station
es = solid blockage coefficient
gy = wake blockage coefficient.

Reference 4 gives the blockage due to the wake in the form

Aq _ _ 1 {Pem " Pco
a e - (P 2
uc
where Pem = static pressure at end of contraction section with model
present
Pco = static pressure at end of contraction section with tunnel
empty.

The tunnel conditions are obtained from static pressure tapping at the
start of the contraction section (assumed to be approximately total pressure)
and a static pressure tapping at the end of the contraction section (pc). The
total pressure line, as can be seen in Figure 3.5, is connected to two dif-
ferential pressure transducers, one open to atmosphere to give H., and the
other connected to the static pressure line to give AP,

The static pressure at the end of the contraction section will then be

Pc = He = AP (A3)
Thus,
1 (Hc - 4P -pco)
Qe = 9, {1 + 2, + 5 1
¢ uc 5 2 Quc
1 Pco
= e {Hc + [2 + l"E.s = ("_-')]quc = AP}
2 Quc
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= .;. {He + [(2 + beg - (p°°)) (q“c) - 1]aP}
Qe = % (He + KaP) (Ak)

where
= [2 + beg - (2“’)] () -1 (A5)
uc

(pco/que) and (quc/AP) are empty tunnel calibration slopes and e¢ is the con-
ventional solid blockage correction.

During on-line display of qc, the values Hc and AP and hence q. are
voltages; thus Equation (Al4) is more conveniently considered in the form

qc = K1 (3 He + Kp0P) (A6)

where K; permits the digital voltmeter (DVM) output to be corrected to
""'engineering' units.

The corrected 'q' potentiometers were set up by opening the static
pressure line to atmosphere and applying a known pressure to the total line
(hence, Hc =AP =applied pressure).

Initially, the AP circuit was disconnected (making AP =0) and the
potentiometer, K;, adjusted to display half the applied pressure on the DVM.
The AP circuit was then reconnected and the potentiometer, K,, adjusted to
display on the DVM the value obtained by solving Equation (AL).
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HYDRAULIC DRIVE MECHANISM
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RUN SCHEDULE FOR CENTER TUNNEL PRODUCTION RUNS




The o< schedule is determined by the value of C. as shown below.

Ce VALUES o VALUES ~~ DEGREES

0.0 %o 0.7 o, 2, 4, 6, 8, 10, 15

1.0 to 10.0 o, 5, 10, 15, 20, 25, 30, 35

G SCHEDULE | G« VALUES
A 0.4, 0.7, 1.0, 2.0, 3.0
B 0.0, 0.2, 0.4, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0
C 0.4, 1.0, 3.0
D 0.4, 3.0
RAKE HEIGHT | RAKE HEIGHT RELATIVE TO WING
SCHEDULE, 2 REFERENCE PLANE 2z2/p
A -1.0 to O D = .05
B -9 to .3 D = .05
C -.8 to .2 N = .05

FIGURE 3.6(b) ANGLE OF ATTACK, MOMENTUM COEFFICIENT, AND WAKK RAKE HEIGHT
SCHEDULES FOR CENTER TUNNEL TESTING
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TOTL1L RUNS

RUN SCHEDULE FOR GROUND EKyECTS PRODUCTION RUNS

F1iUis 3.7(a)



Cw Schedule Cu Values
A 0.4, 0.7, 1.0, 2.0, 3.0
B 0.0, 0.2, 0.4, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0
C 0.4, 1.0, 3.0
D 0.4, 3.0
E 0.4, 1.0, 3.0, 4.0

The < schedule is determined by the value of C,.. and model
height for each run as shown below.

Model
Height, Cu Values ol Values ~~ Degrees
H/C
2 0.0 to 0.7 o, 2, 4, 6, 8, 10, 15
2 1.0 to 10.0 o, 2, 5, 10, 15, 20
1 0.0 to 0.7 0, 2, 4, 6, 8, 10, 15
1 1.0. 10 10.0 0, 2, 4, 6, 8, 10, 15

FIGURE 3.7(b) ANGLE OF ATTACK AND MOMENTUM COEFFICIENT SCHEDULES
FOR GROUND EFFECTS TESTS
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CONFIGURATION: BASIC WING WITH SLATS (A1)
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CONFIGURATION: BASIC WING, SLATS REMOVED (F)
MODEL ON TUNNEL CENTERLINE
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CONFIGURATION: WITH TIPS, FULL SLATS (B)
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CONFIGURATION: WITH TIPS, OUTER SLATS REMOVED (G)
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CONFIGURATION: WITH TIPS, INNER SLATS REMOVED (E)
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u - 3
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STALL AT C, =6, 8, 10. | WHEN STALL OCCURS. DIFFERENCES.
CL<10 : ,
TENDENCY TO "HUMP' IN P00R CORRELATION, DRAG INCREASING P1TCH-DOWN SLAT
CL ~a CURVES, BUT - POLARS MOVED ABOUT 0.6 IN SMALL TUNNEL OFF

FIGURE 5.9 SUMMARY OF SMALL/LARGE-TUNNEL COMPARISONS FOR BASIC CONFIGURATIONS.
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FIGURE 5.10 SUMMARY OF SHALL/LARGE-TUNNEL COMPARISONS FOR TIPPED CONFIGURATIONS.
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FIGURE 7.1 BASIC LIFT DATA IN GROUND EFFECT h/c =1, BASIC WING WITH SLATS (A-1)
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FIGURE 7.8 BAS!IC DRAG DATA IN GROUND EFFECT h/c =2, WITH TIPS, FULLY SLATTED (B)

110



{ F  FLOOR SEPARATES

AT HIGHER ANGLES

{~ T NEGATIVE TAIL STALL
‘ AT HIGHER ANGLES

TAIL STRIKES GROUND

AT HIGHER ANGLES
16 m\ TAZT e 16 o TZZ
AR —
TAIL_; "yt Y TAIL \
o T ] 21 e '
2
8 'Q c 8 -+
N ALMAX ' _G.H:LMAX
- AP~
4 N 4
(2] (22} .
g : 2 5
2 o £ o X e
., 0 -1 =2 -3 57 Yo -1 =2 3 7
S Cm 35 Cn %
< < <
: = =
UO— 6 rya I LCID— 16 lé
V8] wl ul
2 / z 3 2
< 2 r_TAIL : < 1 | TAIL T <.
ON { ' ON |
WING
8 8 A HING
—§S“ | WAKE t
4 i 4
G F—
0 * 0
Q -1 -2 -3 O -1 -2 -3
Cn
Cp=0|q c‘;=l.0

Lit

16

16

12

OPEN SYMBOLS - MOVING BELT
FILLED SYMBOLS ~ BLC FLOOR
TAGGED SYMBOLS ~ FIXED GROUND

Z
B ™
| \ 7
| TAIL K,
OFF
< ™ C
\\‘\ <Ll“£"
/(/
AN\ N 1
N i)
B
=
o - -2 3
Cn %
<
=
=]
Eﬂ
| TAlL 4 =
oN i
7z
2 WING
— XX WAKE
\ N
_\/\ l\
o -1 -2 -3
Cn
C;j=2.0

16 7737
X
! . ;
121 oFF
- ) PVl
s i
Y B N
é’ TN \_i
olgg—L N 151t |F
oV -1 -2 3
Cn
16 FFA NS
niL 17
12 r— oN 7T
) ~ WING™
8 > )( WAKE |
B
4 -
KT .
@] ‘ ~
0 -1 -2 -3
Cm
C"}=3.0

FIGURE 7.9 PITCHING MOMENTS IN GROUND EFFECT. nsc = 1,0. BASIC CONFIGURATIONS (a-1. A-2)
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* FIGURE 7,11 PITCHING MOMENTS IN GROUND EFFECT. h/e = 2.0, BASIC CONFIGURATIONS (A-1. A-2)
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FIGURE 7.12 PITCHING MOMENTS IN GROUND EFFECT. n/c = 2.0, CONFIGURATIONS WITH TIPS (B, O)



Cu 0.4 1.0 3.0
STD. FOR STD. FOR STD. FOR
o RUN ATTACHMENT RUN ATTACHMENT RUN ATTACHMENT
0° | 1.0135 - 1.0288 | 1.018 1.0377 >1.09
g8° | 1.0173 1.008 1.0311 1.015 1.0442 >1.09
15° | 1.0041 1.013 1.0301 1.035 1.0408 2
Cy 0.4 1.0 3.0
. sTD.T AT sTD.T AT sTD.T AT
RUN ATTACHMENT || RUN ATTACHMENT RUN ATTACHMENT
0° 3.6 3.45 4.8 4.6 6.99 NO DATA
(EST)
8° 3,8% 3.7 L.95¢ L. 4 6.2% NO DATA
15° 2.85% 3.2 4, 35% 4,95 6.0% NO DATA .

t Bquals moving ground, by definition.

¢ chcwc

* Beyond Cr, .

FIGURE 7.13 GROUND BLOWING PRESSURES FOR FLOW ATTACHMENT

AND POSSIBLE ASSOCIATED LIFT RESULTS.
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LIFT COEFFICIENT

CONFIGURATION : A1
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FIGURE 7.114 EFFECT OF SUPPORT STRUT FAIRINGS ON LIFT, h/c=1



DRAG COEFFICIENT
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FIGURE 7.15 EFFECT OF SUPPORT STRUT FAIRINGS ON DRAG, h/c=1
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PITCHING MOMENT COEFFICIENT

CONFIGURATION : A1

H/IC = 1 ALPHA = O
3.8
"3 f SYM @°
23
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s Vi
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WL
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0 1 2 3 4

MOMENTUM ' COEFFICIENT

FIGURE 7.16 EFFECT OF SUPPORT STRUT FAIRINGS ON PITCHING MOMENT, h/c=1
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FIGURE 7.17 EFFECT OF SUPPORT STRUT FAIRINGS ON LIFT, h/c=2
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CONFIGURATION : A1
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FIGURE 7.18 EFFECT OF SUPPORT STRUT FAIRINGS ON DRAG, h/c=2
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FIGURE 7.19 EFFECT OF SUPPORT STRUT FAIRINGS ON P|TCHING MOMENT, h/c =2
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