41 research outputs found

    A European questionnaire-based study on population awareness and risk perception of antimicrobial resistance

    Get PDF
    Versi贸n post-printTo tackle antimicrobial resistance (AMR) is of outmost importance for the general population to understand the severity and the relevance of different routes of transmission. Respondents of different age groups, educational and occupational backgrounds, area of living, diet and household composition participated in an online survey with questions concerning socio-demographics, personal use of antibiotics, awareness, general knowledge, sources of information, behavior and attitude toward antibiotics, and risk perception on antibiotics and AMR. Descriptive and logistic regression analyses were carried out. A total of 1252 respondents, mainly from EU, participated in the survey. About 57.7% declared they consumed antibiotics in the last year and some misguided behaviors were identified, especially for those not having a food- or health-related background, who more frequently failed in giving the right answer to uncontroversial true/false questions (ANOVA, P < 0.05). The youngest respondents were less confident on the information received from traditional media (OR = 0.425), the national government (OR = 0.462), and consumer organizations (OR = 0.497), while they frequently obtained information from social networks and online media, which could therefore be exploited as a channel for educational campaigns targeting this population group. New measures, strategies and policy agenda at a European level aimed at improving awareness on AMR among targeted community groups must be taken into consideration.S

    Microbiota and Cyanotoxin Content of Retail Spirulina Supplements and Spirulina Supplemented Foods

    Get PDF
    [EN]Cyanobacterial biomass such as spirulina (Arthrospira spp.) is widely available as a food supplement and can also be added to foods as a nutritionally beneficial ingredient. Spirulina is often produced in open ponds, which are vulnerable to contamination by various microorganisms, including some toxin-producing cyanobacteria. This study examined the microbial population of commercially available spirulina products including for the presence of cyanobacterial toxins. Five products (two supplements, three foods) were examined. The microbial populations were determined by culture methods, followed by identification of isolates using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), and by 16S rRNA amplicon sequencing of the products themselves and of the total growth on the enumeration plates. Toxin analysis was carried out by enzyme-linked immunosorbent assay (ELISA). Several potentially pathogenic bacteria were detected in the products, including Bacillus cereus and Klebsiella pneumoniae. Microcystin toxins were detected in all the products at levels that could lead to consumers exceeding their recommended daily limits. Substantial differences were observed in the identifications obtained using amplicon sequencing and MALDI-TOF, particularly between closely related Bacillus spp. The study showed that there are microbiological safety issues associated with commercial spirulina products that should be addressed, and these are most likely associated with the normal means of production in open ponds.S

    Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity

    Get PDF
    Art铆culo versi贸n publicadaBackground: The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.5 years of activity. Results: We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2 months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter, Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An increase in total abundance, alpha diversity, and 尾-dispersion of ARGs, which were predominantly assigned to Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region, was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum 尾-lactamase- producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities started. ARGs associated with resistance to 尾-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly detected at the later sampling times in drains. Conclusions: The observations made suggest that pig carcasses were a source of resistant bacteria that then colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces, represented a reservoir for the spread of ARGs in the meat processing facility.S

    Antimicrobial Activity of Cobalt (II)-Citrate against Common Foodborne Pathogens and Its Potential for Incorporation into Food Packaging Material

    No full text
    Novel antimicrobial compounds can be added to foods directly or incorporated into packaging materials in order to improve food safety and shelf life. One such potential antimicrobial compound is the bioinorganic complex Co(II)-citrate (NH4)4[Co(C6H5O7)2] (Co-cit). Its antimicrobial activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was investigated in solution, both alone and in combination with existing preservatives. The antimicrobial activity of poly(lactic acid) films (PLA) with incorporated Co-cit (23.3% w/w) against L. monocytogenes was determined using culture medium and model foods (slices of turkey ham and smoked salmon). In nutrient broth, without preservatives, all four bacteria were significantly (p L. monocytogenes and P. aeruginosa were the most sensitive. The addition of preservatives to the broth increased the antimicrobial activity of Co-cit in many cases, but not in a way that was consistent between the different bacteria investigated and was likely due to additional physiological stress exerted on the cells rather than any effect on the activity of the Co-cit itself. PLA films with Co-cit were bacteriostatic against L. monocytogenes on artificial media and on foods. However, in the latter case, the PLA film itself was the main contributor to the inhibition. Composite PLA-(Co-cit) films exhibited antimicrobial activity against foodborne bacteria and have potential application as active packaging materials to enhance food safety

    Antimicrobial Activity of Cobalt (II)-Citrate against Common Foodborne Pathogens and Its Potential for Incorporation into Food Packaging Material

    No full text
    Novel antimicrobial compounds can be added to foods directly or incorporated into packaging materials in order to improve food safety and shelf life. One such potential antimicrobial compound is the bioinorganic complex Co(II)-citrate (NH4)4[Co(C6H5O7)2] (Co-cit). Its antimicrobial activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was investigated in solution, both alone and in combination with existing preservatives. The antimicrobial activity of poly(lactic acid) films (PLA) with incorporated Co-cit (23.3% w/w) against L. monocytogenes was determined using culture medium and model foods (slices of turkey ham and smoked salmon). In nutrient broth, without preservatives, all four bacteria were significantly (p &lt; 0.05) inhibited by 0.5 mM Co-cit, and L. monocytogenes and P. aeruginosa were the most sensitive. The addition of preservatives to the broth increased the antimicrobial activity of Co-cit in many cases, but not in a way that was consistent between the different bacteria investigated and was likely due to additional physiological stress exerted on the cells rather than any effect on the activity of the Co-cit itself. PLA films with Co-cit were bacteriostatic against L. monocytogenes on artificial media and on foods. However, in the latter case, the PLA film itself was the main contributor to the inhibition. Composite PLA-(Co-cit) films exhibited antimicrobial activity against foodborne bacteria and have potential application as active packaging materials to enhance food safety
    corecore