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Abstract

Background: The microorganisms that inhabit food processing environments (FPE) can strongly influence the
associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant
microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat
processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a
detailed analysis of a newly opened pork cutting plant over 1.5 years of activity.

Results: We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2
months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter,
Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An
increase in total abundance, alpha diversity, and B-dispersion of ARGs, which were predominantly assigned to
Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region,
was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum B-lactamase-
producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities
started. ARGs associated with resistance to 3-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently
co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly
detected at the later sampling times in drains.

Conclusions: The observations made suggest that pig carcasses were a source of resistant bacteria that then
colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces,
represented a reservoir for the spread of ARGs in the meat processing facility.
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Background

Food processing environments (FPE) can be an im-
portant source of microorganisms that cross-
contaminate raw materials and processed foods, with
important implications for food quality and safety [1].
Microorganisms can continuously access FPE through
the entry of new raw materials and utensils, the flow
of workers or the use of cleaning water, and some of
them persist in the environment through the presence
of harbourage sites in processing plants, surfaces that
are difficult to clean or disinfect, or organic residues
from food processing which can create microenviron-
ments that support microbial growth [2, 3]. Moreover,
specific taxa or lineages/strains that possess enhanced
ability to form biofilms, survive sanitation, and/or
mount adaptive stress responses are particularly well
equipped to persist [4, 5].

The possibility that FPE may act as a reservoir of
antibiotic-resistant (AR) microorganisms and a hotspot
for antibiotic resistance genes (ARGs) transmission is a
concern in meat processing plants [6]. The overuse of
antibiotics as therapeutic, metaphylactic, or prophylactic
agents in intensive rearing of food production animals,
linked to the cross-contamination of meat with gut AR
bacteria during evisceration and other dressing activities
at slaughterhouses, may result in the introduction of AR
microbes in meat processing plants [7]. In addition, cer-
tain biocides used for sanitation can induce the selection
of enhanced resistance to other unrelated compounds,
such as some antibiotics [6]. However, these poorly
understood phenomena have not been directly con-
firmed in real industrial settings, and no single study has
followed the emergence and establishment of AR
bacteria in FPE from the moment a facility begins
operations.

To date, culture-dependent analyses, coupled with the
typing of recovered isolates through molecular tech-
niques, have been widely used for unearthing routes of
microbial cross-contamination to food and identifying
episodes of persistence in FPE [8]. These approaches
generally focus on mapping the distribution of specific
environmentally transmitted pathogenic bacteria of high
concern (e.g., Listeria monocytogenes) [9]. Recent
advances in high-throughput sequencing technologies
allow to perform larger-scale untargeted analyses of the
resident microbial communities in FPE, which facilitate
the tracking of a wider range of microbial agents and
their associated gene repertoires [10]. However, with the
exception of a few studies limited to the characterization
of FPE through 16S rRNA gene amplicon sequencing
[11-16], detailed culture-independent whole metagen-
ome sequencing analyses have not yet been undertaken
to characterize temporal shifts in the structure and resis-
tome of their microbial populations.
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Over the last decade, some pioneering studies character-
ized the microbiome of built environments and demon-
strated its impact on the human microbiome and health
status [17]. These initial experiences mainly focused on
household domestic and hospital settings [18—22] but few
studies have been done on food processing facilities [23].
The microbiome colonization of new environments is
commonly characterized by an initial fluctuating period
with high diversity values until the establishment of a
more stable microbiome, as has been reported on infants
[24], fermented foods [25], or building materials under
high humidity conditions [20]. Considering these previous
findings, we hypothesize that the microbiome of a newly
established food manufacturing facility goes through
waves of succession before becoming relatively stable and
that daily processing and sanitation activities impact on
the burden and composition of antimicrobial resistance
determinants, leading to the establishment of reservoirs or
hotspots of antimicrobial-resistant microorganisms in
EPE. To test this hypothesis, here we present the results of
a longitudinal 18-month survey of the bacterial and resis-
tome diversity encountered within the FPE of a newly
constructed pork cutting plant. In total, 1374 swab sam-
ples were collected from multiple surfaces on ten sam-
pling visits, 229 sample pools were analysed through
shotgun metagenomic sequencing, and a collection of 360
isolates from the Enterobacteriaceae, Pseudomonadaceae,
Enterococcaceae, and Staphylococcaceae families was
characterized to monitor the occurrence of phenotypes
and genotypes associated with resistance to antibiotics of
critical importance.

Results

The taxonomic diversity in FPE increased over time
Samples were categorized to one of three temporal
groups, i.e., T1 for samples before the processing plant
became operational, T2 for samples within the first 2
months of operation (i.e., linked to short-term changes
in the microbiome), and T3 for samples from 2 to 18
months of operation (i.e., associated with long-term
changes in the microbiome) (Fig. 1).

Species richness and the Simpson index average values
were similar on visits belonging to the same time cat-
egory (see Additional file 1: Figure S1), but significantly
increased (p < 0.05) from T1 and T2 to T3 (Fig. 2A).
This pattern was particularly evident for drains, floors,
equipment, and meat surfaces (see Additional file 1:
Figure S2A), and for all processing rooms except R1 in
the case of the Simpson index (see Additional file 1:
Figure S2B). Drains were the surfaces with the highest
alpha diversity regardless of the sampling period (see
Additional file 1: Figure S3A), while no major differences
were observed among rooms (see Additional file 1:
Figure S3C).
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Fig. 1 Schematic map of the meat processing facility and summarized information on the surfaces sampled per room. The 10 visits performed
over 1.5 years were grouped in 3 time categories (indicated at the top of the figure). The different surfaces sampled at each processing room are
indicated in the map, together with their classification as food contact surfaces (FCS) or non-food contact surfaces (NFCS). Asterisks in the “Room”
legend indicate those room groups comprising more than one physical room

Sampling time, surface type, and processing room had
a significant influence on the taxonomic profile of sam-
ples (adonis, p = 0.002) and explained 22.8%, 14.5%, and
53% of the variation observed, respectively (see
Additional file 2: Table S1). Ordination analyses resulted

in T3 samples grouping separately from T1 samples,
while T2 samples showed an intermediate profile
between them (Fig. 2B). B-dispersion was significantly
higher at T3 than at T1 and T2 (p < 0.001) (Fig. 2B).
Drains were the surfaces with the highest B-dispersion,
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Fig. 2 Changes in bacterial alpha diversity, beta diversity and bacterial taxonomy along the 1.5 years of activity. A Richness and Simpson indices
and B Principal Coordinates Analysis, using Bray—Curtis distance, at species level for the 210 industry samples (n = 55 for T1, n = 70 for T2, n = 85
for T3). The centroid of each ellipse represents the group mean, and the shape is defined by the covariance within each group. Adonis test
values are indicated in Table S1. Distance to the centroid values were employed to evaluate the homogeneity of variances within each group.
Only significant p values (p < 0.05) obtained from the Wilcoxon signed-rank test analysis are indicated. C Barplot representing the relative
abundance of the 16 most relevant bacterial genera (average total abundance > 1% or at least one sample with abundance > 15%). Other
bacterial genera are grouped into “Other”. A sample is represented by each bar, and samples are grouped by Surface and Time groups, indicated

at the top and bottom of the plot, respectively

with drain samples from T1 and T2 clustering away
from samples from other surfaces (see Additional file 1:
Figure S3B). Differences in p-diversity were less evident
between rooms, due to the stronger influence of sam-
pling time and surface type (see Additional file 1: Figure
S3D; Additional file 2: Table S1). Although T3 samples
were collected over a broader time range, this is not the
basis for the observed higher pB-dispersion as the analysis
by visit showed similar 3-dispersion levels for all the visits
corresponding to T3 (see Additional file 1: Figure S1).
Sixteen genera were identified as the most abundant
colonizers of FPE, showing an average abundance of 1%
or greater across all samples or an abundance of 15% or
greater in at least one individual sample (Fig. 2C).

Among them, Pseudomonas, Acinetobacter, and Psychro-
bacter, with average abundances of 56.7, 7.3, and 6.2%,
respectively, were most dominant.

Among the most abundant taxa, a significant decrease
(p < 0.001) was observed over time in the relative abun-
dance of Pseudomonas and Stenotrophomonas (Fig. 2C;
see Additional file 3), with this temporal decrease being
significant (p < 0.05) across all surfaces for Pseudomonas
(see Additional file 1: Figure S4A) and for equipment,
floor, and meat samples for Stenotrophomonas (p < 0.05)
(see Additional file 1: Figure S4B). In contrast, a signifi-
cant increase (p < 0.001) in relative abundance over time
was observed for Acinetobacter, Psychrobacter, Brevundi-
monas, and Acidovorax, among other genera (Fig. 2C;
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see Additional file 3), with the temporal increases being
particularly marked for Acinetobacter on equipment,
floors, and tables (see Additional file 1: Figure S4C);
Psychrobacter on all surfaces except knives (see
Additional file 1: Figure S4D); and Brevundimonas and
Acidovorax on drains, equipment, and floors (see Add-
itional file 1: Figure S4E and Figure S4F). Relative abun-
dances and statistical information for all genera are
shown in an additional file (see Additional file 3).

The abundance and diversity of ARGs increased over time
A significant increase (p < 0.05) in the total amount of
ARGs was observed over time (Fig. 3A), mainly due to
increased ARG counts per million reads (CPM) at T3 in
equipment, floors, and tables and in R3, R5, and R6 (see
Additional file 1: Figure S5A and S5D). Similarly, signifi-
cant increases along time were observed for both rich-
ness and Simpson diversity indices (p < 0.05) (Fig. 3B).
Drains had the highest resistome alpha diversity across
all sampling times, while tables and equipment pre-
sented the lowest alpha diversity values at T3 (see Add-
itional file 1: Figure S5B), and no major differences were
found among processing rooms (see Additional file 1:
Figure S5E).

In B-diversity analyses, T3 samples grouped separately
from T1 and T2 samples, with T2 displaying an inter-
mediate resistome profile (Fig. 3C), and showed a larger
B-dispersion, with significantly higher average distance
to the centroid than T1 and T2 samples (Fig. 3C). The
effect of sampling time (adonis, p < 0.05) explained
11.7% of the variation, while surface type and processing
room had a less marked effect on ordination, explaining
up to 8.0% and 5.0% of the variation, respectively (see
Additional file 1: Figure S5C and Figure S5F; see
Additional file 2: Table S1).

The resistome structure temporally evolved, and
Acinetobacter and Pseudomonas were the most relevant
carriers of ARGs

The most abundant ARGs were associated with resist-
ance to B-lactams (27.2%), tetracyclines (26.9%), amino-
glycosides (25.3%), and quinolones (7.5%), but the
resistome composition evolved over time. Whereas the
main group of ARGs detected at T1 was that related to
resistance to B-lactams, followed by resistance to quino-
lones, a significant increase was observed from T1 and
T2 to T3 in the relative abundance of ARGs related to
resistance to aminoglycosides (p < 0.001), tetracyclines
(p < 0.01) and antimicrobials of the MLSP group
(macrolides, lincosamides, streptogramins, and pleuro-
mutilins) (p < 0.05) (Fig. 3D; see Additional file 4). On
the other hand, a significant decrease along time was
found for ARGs linked to quinolone resistance (p < 0.001)
(Fig. 3D; see Additional file 4). These global trends from
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T1 to T3 were generally observed on each surface and
processing room (Fig. 3D; see Additional file 1: Figure
S6A).

Up to 68.7% of the ARGs could be ascribed to contigs,
which were taxonomically assigned to 72 different gen-
era, among which Acinetobacter and Pseudomonas
accounted for 28.1% and 9.3% of the total ARGs (Fig. 4;
see Additional file 5). ARGs linked to B-lactam resist-
ance were mainly assigned to Acinetobacter on NECS,
followed by Aeromonas, Pseudomonas, and Shewanella,
and to Acinetobacter and Pseudomonas on FCS (Fig. 4;
see Additional file 5). Quinolone-resistance—associated
ARGs were mainly assigned to Pseudomonas on both
FCS and NECS (Fig. 4; see Additional file 5). Whereas a
significant number of ARGs associated with resistance
to aminoglycosides could not be classified at genus level,
Thermus, Mycoplasma, Pseudomonas, and Acinetobacter
were frequent carriers at T3 (Fig. 4; see Additional file 5).
ARGs linked to resistance to tetracyclines were mainly
assigned to Acinetobacter at T2 and to Acinetobacter,
Pseudomonas, Morganella, and Mycoplasma at T3 (Fig. 4;
see Additional file 5). ARGs of the MLSP group were
mainly assigned to Thermus and Pseudomonas on FCS at
T3, and to Pseudomonas and Mycoplasma at T3, on NFCS
(Fig. 4; see Additional file 5).

Several different determinants of resistance to tetracy-
clines (tet(39), tet(H), tet(Q), tet(L)), p-lactams (blarop.1,
blappao, blaoxa-2s1, blaoxan11, blaoxa-n12 blaoxa-2sos
blaoxa-334), and aminoglycosides (aph(3)-Ib, aph(3)-la,
aph(6)-1d, aadD, aadA6, ant(3)-la) were among the
most abundant ARGs (see Additional file 1: Figure S6B;
see Additional file 6). The ogxB gene, associated with re-
sistance to quinolones, was the most abundant
determinant associated with resistance to critically im-
portant antibiotics (CIA), as defined by the World
Health Organization [26]. Other less abundant ARGs as-
sociated with resistance to CIA mainly belonged to the
quinolones ARG class, at T1 and T2, and the MLSP
ARG class, on equipment, meat, and table surfaces at T3
(Fig. 3E). Notably, the total abundance of ARGs linked
to resistance to CIA significantly decreased (p < 0.01)
over time on drains and floors, and only increased on
equipment surfaces (Fig. 3E; see Additional file 2: Table S2).
Statistical information for all ARGs is shown in an additional
file (see Additional file 6).

The abundance of mobile genetic elements (MGE) was
higher in drains and increased over time

Determinants from some ARG classes frequently
coexisted together in FPE, as in the case for ARGs as-
sociated with resistance to [-lactams, tetracyclines,
aminoglycosides, and sulphonamides (R*> > 0.6, p <
0.05) (Fig. 5A). Focusing on ARGs associated with
resistance to CIA and with average abundances > 0.05
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(See figure on previous page.)

Fig. 3 Resistome dynamic changes along time, as revealed through the evolution of alpha and beta diversity indices and ARG composition. A
Antibiotic resistance genes (ARGs) counts per million reads (CPM); B richness and Simpson's indices calculated with the ARG-CPM matrix; and C
Principal Coordinates Analysis, using Bray—Curtis distance, at ARG level for the 210 industry samples (n = 55 for T1, n = 70 for T2, n = 85 for T3).
The centroid of each ellipse represents the group mean, and the shape is defined by the covariance within each group. Adonis test values are
indicated at Table S1. Distance to the centroid values were employed to evaluate the homogeneity of variances within each group. Only
significant p values (p < 0.05) obtained from the Wilcoxon signed-rank test analysis are indicated. D Barplot of the 14 ARG classes detected and E
the 7 ARG classes associated with resistance to antibiotics of critical importance calculated by adding ARG abundances according to the
antibiotic classes they confer resistance to (Suppl. File 4). Each bar represents the average value for samples belonging to the same Surface and
Time groups, indicated at the top and bottom of the plot, respectively. MLSP refers to macrolides, lincosamides, streptogramins, pleuromutilins

CPM, strong correlations were observed between
blaoxa-a27, blacmy-11, blacmy sy, (linked to P-lactams
resistance), and mcr-7 (associated with polymyxin re-
sistance) (R* > 0.75, p < 0.05); and also between
erm(X) and erm(F), both associated with resistance to
antibiotics of the MLSP group (R* > 0.95, p < 0.05)
(Fig. 5B). MGE and lateral gene transfer (LGT) events
were significantly more abundant in drains than on
other surfaces (p < 0.05), and the abundance of pre-
dicted plasmid-associated contigs was significantly
higher at T3 than at T1 and T2 (p < 0.001) (Fig. 5C).
Up to 57 integrons associated with ARGs were found,
all associated with drain samples, with a clear domin-
ance of T3 samples over T1 and T2 samples. All the
identified ARG-carrying integrons contained aadA
genes, associated with resistance to aminoglycosides
(see Additional file 7).

The occurrence of certain bacteria resistant to CIA sharply
increased when pork cutting activities started

Culture-dependent analyses undertaken on a collection
of 360 isolates from FPE revealed that, at T1, only in
33.3% and 10.5% of the samples, the strains isolated
showed resistance to at least one of the antibiotics evalu-
ated in the phenotypic tests and carried at least one of
the tested ARGs, respectively, while at T2, these values
increased to 55.7% and 27.1% of the samples. However,
these percentages decreased again to 25.5% and 3.9%, re-
spectively, at T3 (Fig. 6A). These temporal patterns
reflected the statistically significant increase from T1 to
T2 of AR isolates from extended-spectrum p-lactamase
(ESBL) producing Enterobacteriaceae (p < 0.05) and
vancomycin-resistant Enterococcaceae (VRE) (p < 0.001)
(see Additional file 1: Figure S7). Regarding surface type
and processing room, drains and meat were the sample
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categories where the highest percentage of samples car-
rying AR microorganisms (46.3% and 45%, respectively)
were found, although no significant differences across
surfaces were observed, and the cutting room for Iberian
pork showed a significantly higher proportion of samples
containing AR bacteria than the cutting room for white
pork (Fig. 6A).

The results obtained for a subset of 58 Enterococcus
spp. isolates subjected to testing with a wider range of
antibiotics showed that multidrug resistance profiles
were mainly found among strains from meat and NFCS
(Fig. 6B). A significantly higher (p < 0.05) representation
of Enterococcus isolates showing erythromycin or multi-
drug resistance was recorded at T2 and T3 relative to
T1 (Fig. 6C). Moreover, significant positive correlations
were found between the minimum inhibitory concentra-
tions observed for several pairs of antibiotics (e.g.,
erythromycin, tetracycline, and tigecycline; R* > 0.55, p
< 0.05) (Fig. 6D).

A microbiome specialization took place on different
surfaces at long term

We calculated the resemblance, at taxonomic species
and ARG levels, of samples taken from different surfaces
during the same sampling period (T1, T2, or T3) by cal-
culating the Pearson correlation coefficient of the aver-
age values per surface and time. The resemblance of
samples from different surface types decreased along
time, at both taxonomic and ARG levels. Drains for tax-
onomy and drains and meat for the resistome had the
lower correlation values at T1 and T2 (Fig. 7A). Like-
wise, knife samples for taxonomy and knives and equip-
ment for the resistome showed the lowest correlation
values at T3 (Fig. 7A). We also assessed the number of
contigs shared between each pair of samples by using a
very strict cut-off (blastn; 100% identity; coverage > 80%;
contig length > 1500 bp). Although the total number of
contigs was higher in T3 than in T1 and T2 (Fig. 7B),
the number of contigs shared between samples was
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significantly lower (p < 0.001) at T3, as compared with
those at T1 and T2, and this was observed for almost
every surface (Fig. 7C). Similarly, although drains con-
tained the highest number of total contigs (Fig. 7B), they
had fewer shared contigs than other surfaces (Fig. 7C).
When samples from different sampling times were com-
pared, a significantly higher amount of contigs were
shared between T1 and T2 samples than between those
from T3 and other times, except for tables (Fig. 7D). Up
to 79.0% of the shared contigs were assigned to Pseudo-
monas, 5.3% to Microbacterium, 2.8% to Stenotrophomo-
nas, 1.0% to Acinetobacter, and 0.7% to Psychrobacter.
These were the only genera linked to at least a 0.5% of
the shared contigs (Fig. 7E).

Discussion

The microbiome mapping activities revealed that FPE
were dominated by a limited group of environmental
bacteria, such as Pseudomonas, Acinetobacter, Psychro-
bacter, Stenotrophomonas, Brevundimonas, Acidovorax,
or Microbacterium, among others, which constituted a
core microbiota that was generally shared among differ-
ent surfaces and rooms but evolved temporally.

Studies based on culture-independent methodologies
have previously shown that hundreds of different species
can be present in a single processing facility, but only a
few taxa of residential bacteria commonly dominate FPE,
as reviewed by Moretrg and Langsrud [1]. While the vast
majority of the principal microbial taxa detected in our
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the circle indicate the percentage of contigs assigned to each genus

Fig. 7 Microbial persistence in FPE. A Correlograms performed using average values, per surface type and sampling time, of each species and
ARGs found by using kraken2 and ResFinder, respectively. Pearson correlation values are indicated within the cells. B Number of contigs with
length > 1500 bp obtained on each FPE sample (n = 210). C Average values of contigs shared between samples from the same sampling time
by surface type. D Average values of contigs shared between samples from 2 different sampling times by surface type. Only significant p values
(p < 0.05) obtained from the Wilcoxon signed-rank test analysis are indicated. E Taxonomical classification of shared contigs. The proportions in

study have been frequently reported as dominant taxa in
other previous studies characterizing food processing
plants [1], our study is novel by virtue of providing a
deep insight into how the microbiome evolves in a newly
built FPE. Throughout the 1.5-year study, a more het-
erogeneous taxonomic profile across surface types and
processing rooms was observed over time. Pseudomonas,
which was the most abundant genus overall, became less
dominant over time, although it was still the main group
on drains, meat, equipment, and tables at T3. Notably,
Pseudomonas is a taxonomic group of great interest in
meat industries due to the recognized role of some
Pseudomonas species as major meat spoilers [27] and is
among the most frequently reported taxa found after
sanitation of processing surfaces from all types of food
production chains, with its persistence being likely due
to low growth requirements and the ability to grow at
low temperatures, form biofilms, and tolerate biocides
[1]. Nevertheless, throughout the study, other taxa of the
core microbiota were also prominent (e.g., at T3,
Psychrobacter and Acinetobacter were the most abun-
dant taxa on floors and trays, and on knifes,
respectively).

Total abundance, alpha diversity, and p-dispersion of
ARGs; abundance of ARGs conferring resistance to ami-
noglycosides, tetracyclines, and antibiotics of the MLSP
group; and relative abundance of contigs associated with
plasmids, were all significantly higher at T2, and espe-
cially at T3, than at T1. This, together with the higher
occurrence of microorganisms showing resistance to cer-
tain CIA at T2, just after pork cutting activities started,
suggests that pig carcasses and pork meat are a source
of AR bacteria, ARGs, and MGE. Indeed, those ARG
classes prevailing in T2 and T3 mainly confer resistance
to the antibiotics most frequently used on pig farms [28]
and a recent resistome study carried out at pig farms
from the same region identified ARGs from the tetracy-
clines, aminoglycosides, and MLSP classes as the most
prevalent in fecal, environmental, and slurry samples
[29]. Moreover, some FCS, such as equipment, showed
towards the end of the study a higher ARG CPM and
a greater abundance of ARGs linked to resistance
against CIA, and the rooms where more intense meat
manipulation takes place (e.g., cutting rooms and
rooms for post-cutting activities—R3 to R7) also had,
in general, higher ARG CPM. This again suggests the

likely transfer of resistant bacteria from carcasses and
meat to FPE.

Although pig carcasses seem to be the main means of
entry of AR bacteria and ARGs, daily activities at the
processing plant may also shape the resistome. In this
regard, drains exhibited the highest microbial loads (see
Additional file 8), diversity and richness of taxa and
ARGs, and abundance of integrons and LGT events.
Drains represent complex microbial ecosystems where
several factors that may favor the emergence and spread
of AMR converge (i.e., they are environments with high
humidity and contain dense microbial populations ex-
posed to high contents of organic matter and run-off
from meat processing activities, including low concen-
trations of cleaning and disinfection agents) [30]. This
microenvironment provides ideal conditions for biofilm
formation and horizontal gene transfer. In practical
terms, poor drain maintenance may lead to the pooling
of water and, eventually, the recontamination of other
FPE and ultimately the food with AR bacteria.

ARGs were mainly associated with specific members of
the principal microbiota (e.g., Acinetobacter, Pseudo-
monas, Aeromonas, Mycoplasma, Brevundimonas, Psy-
chrobacter, Stenotrophomonas), but also with some less
abundant taxa (e.g., Thermus, Morganella, Streptococcus),
which can therefore be also highly relevant in terms of
AMR transmission in FPE. Acinetobacter stood out as the
most frequent carrier of ARGs. This is particularly rele-
vant as Acinetobacter is responsible for hospital-acquired
infections caused by multidrug-resistant isolates [31], and
some reports have previously concluded that raw meat
represents a reservoir of multidrug-resistant Acinetobacter
strains and may serve as a vector for their spread into
community and hospital settings [32].

Whereas the total abundance of ARGs associated with
resistance to CIA decreased over time (except for some
ECS, such as equipment and tables), culture-dependent
analyses showed a sharp increase in occurrence of ESBL-
producing Enterobacteriaceae and VRE once the facility
started to operate at full capacity. This demonstrates that
the pork production chain can serve as a transmission
route for resistant microorganisms of clinical relevance, as
also shown in previous studies [33]. Interestingly, the de-
terminants identified in culture-dependent analyses were
not detected through whole metagenome sequencing,
which demonstrates the importance of combining both
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approaches when studying FPE resistomes with a focus on
clinically relevant genes and species. Furthermore, the spe-
cies obtained through culture-dependent approaches, with
the exception of Pseudomonas, were found in low abun-
dance in the metagenomes (see Additional file 1: Figure
S8). Therefore, a species-focused isolation, involving an
enrichment step, significantly improved the resistome
screening performed following the culture-independent
metagenomics approach.

The frequent co-occurrence of some ARGs associated
with resistance to different antimicrobial classes, or the
isolation of Enterococcaceae with multidrug-resistance
profiles, suggest that co-selection for resistance to various
different antibiotics can occur on FPE of meat processing
plants. MGE, which in our study were found in a higher
percentage of contigs on drain samples and at T3, can play
a relevant role in such co-resistance events [34].

The resemblance of samples from different surface
types and processing rooms at taxonomic and ARG level
was higher at the first sampling times, where a relatively
high amount of contigs (mainly from Pseudomonas)
were shared among samples, than later throughout the
study. This suggests that while specific taxonomic
groups colonized and became dominant in the facility,
the lineages or strains that thrived in different ecological
niches within the processing plant were very different
from each other, also in terms of genetic repertoire. This
reflects their likely higher adaptability to the particular
microenvironments prevailing in the different FPE
within the facility.

Conclusions

To our knowledge, this is the first extended longitudinal
study dedicated to characterizing the microbiome of the
built environment of a newly opened food processing
plant. In doing so, we have found that a number of en-
vironmental dwelling taxa colonized FPE and became
dominant and that a certain degree of microbiome
specialization took place depending mainly on the sur-
face or environment being assessed. We have also dem-
onstrated that an important disruption of the
microbiome happened once meat-cutting activities
started, with the introduction in the facility of carcass-
associated AR microorganisms and ARGs conferring re-
sistance to those antibiotics more frequently used on pig
farms in the region. Finally, we have identified several
environmental reservoirs of AMR within the pork cut-
ting facility, among which drains and some FCS, such as
equipment and table surfaces, were of special relevance.

Methods

Sampling strategy

The survey was conducted in a Spanish newly opened
pork processing facility producing packed fresh pork
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meat. Environmental samples were collected on ten sam-
pling dates between July 2017 and February 2019. The
first sampling visit was carried out just after the building
and equipment installation works finished and before
any pork processing activity or sanitation procedure took
place. Sanitation activities started before the second
sampling visit, conducted a week later, while a small
number of pig carcasses were for the first time processed
on the day that the third sampling visit took place. In
subsequent samplings, initially carried out weekly until
the fourth visit, then monthly until the sixth visit, and fi-
nally quarterly, the facility was fully operational. In an
attempt to better characterize the resident (non-transi-
ent) microbiome, all sampling visits took place before
the start of the working day, when the FPE were still
clean after routine cleaning and disinfection on the pre-
vious evening. The following rooms were sampled at
each sampling visit: a chilling room for carcasses (R1),
two cold storage rooms for carcasses (R2), a cutting
room exclusively used for white pigs processing (R3), a
cutting room exclusively used for Iberian pigs processing
(R4), several cold storage rooms used for different types
of meat cuts obtained at the cutting rooms (R5), a small
trotters’ washing room (R6), and a packaging room (R7)
(Fig. 1). Environmental swab samples were taken from
different food contact surfaces (FCS), which included
tables, trays, knives, equipment, or conveyor belts,
and non-food contact surfaces (NFCS), which in-
cluded drains, walls, floors, sinks, trolley wheels, and
others, as well as from the surface of carcasses and
meat cuts (Fig. 1; see Additional file 8).

Sample collection

Samples were collected by using HydraSponge sterile
sponge swabs pre-moistened with 10 mL of neutralizing
buffer (3M, USA). When enough surface was available
(e.g., floors, walls), a surface of ~ 1 m> was sampled, by
swabbing surfaces first horizontally, then vertically and
finally diagonally, turning the swab around in between.
For other surfaces, where swabbing 1 m* was not pos-
sible (e.g., drains or knives), individual units (e.g., 1 drain
or 1 knife) were swabbed. When swabbing, the bag
opening was kept to the side to decrease airborne con-
tamination. Once the swab was taken, the air in the bag
was manually and carefully removed, and the bag was
sealed. Bags for culture-dependent analyses contained
one single swab for each room and surface sampled,
while 5 different swabs for each room and sample cat-
egory were pooled together in sampling bags used for
culture-independent analyses. In total, 1374 swab sam-
ples (229 for culture-dependent analyses and 1145 for
culture-independent analyses, the latter ones pooled in
229 composite samples) were collected and categorized
as drains (drain: 29.3% of the samples), equipment in
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contact with meat (equipment: 15.3%), floors, walls and
other non-food contact surfaces (floor: 29.3%), knives
(knife: 3.1%), carcasses and meat surfaces (meat: 8.7%),
tables and conveyor belts (table: 8.3%), and trays (tray:
6.1%).

Appropriate single-use disposable protective clothing
(e.g. gloves, footwear, hairnets) were used during the
sampling visits and gloves were changed after each sam-
ple was taken to avoid cross-contamination of samples.
Sampling bags were then placed in a cooling box con-
taining ice packs and transported to the laboratory
within 2 h for sample processing.

Culture-dependent analyses

In culture-dependent analyses, strains from Enterobacte-
riaceae, Staphylococcus spp., Pseudomonas spp., and
Enterococcus spp. were isolated as frequent carriers of
acquired antibiotic resistance of relevance in swine farms
and FPE. Then, recovered isolates were screened for
ESBL-associated (Enterobacteriaceae and Pseudomonas
spps blactx.w  blasyy), carbapenemase-associated
(Pseudomonas spp.; blaoxa_se blapp blavng blaxpc.1,
blaxpy.1), methicillin (Staphylococcus spp.; mecA), and
vancomycin (Enterococcus spp.; vanA, vanB) resistance
pheno- and genotypes.

Microbial isolation

A primary enrichment step was carried out by suspend-
ing sponge swab samples in 100 mL of Buffered Peptone
Water (BPW, Merck, Germany). After incubation at 37
+ 1 °C for 18-24 h, this primary enrichment solution
was used to inoculate different agar media for the recov-
ery of the targeted microbial groups.

Eosin methylene blue (EMB, Merck, Germany) agar
plates were inoculated with a sterile loop (10 pL) and
incubated at 37 + 1 °C for 18-24 h for the isolation of
Enterobacteriaceae, whereas KingB agar plates supple-
mented with cetrimide, fucidin, and cephalotin (CFC)
(Merck, Germany) were loop inoculated (10 pL) and in-
cubated at 30 + 1 °C for 44-48 h for the isolation of
Pseudomonas spp.. Presumptive Enterobacteriaceae
(black colonies with metallic glitter) and Pseudomonas
spp- (green fluorescent colonies under the UV light) col-
onies were freshly inoculated on Brain Heart Infusion
agar plates (BHI, Merck, Germany) and cultivated at 37
+ 1 °C for 18-24 h for their incorporation to the culture
collection.

The isolation of Staphylococcus spp. was performed by
inoculating 100 uL of the primary enrichment on Baird
Parker agar plates supplemented with egg yolk tellurite
(BP, Merck, Germany), followed by 18-24 h of incuba-
tion at 37 + 1 °C. Then, black or grey colonies with or
without clear halo were freshly inoculated on BHI agar
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plates, which were incubated at 37 + 1 °C for 18-24 h
for their incorporation to the culture collection.

For the isolation of Enterococcus spp., the primary en-
richment samples were streaked with a sterile loop (10
pL) on Slanetz and Bartley agar plates (VWR Inter-
national, Belgium), which were incubated at 37 + 1 °C
for 18-24 h. After incubation, the colonies were trans-
ferred using a membrane filter onto pre-warmed (44 + 1
°C) bile esculin azide agar plates (BEA, Oxoid Ltd., UK),
which were further incubated at 44 + 1 °C for 4 h for
biochemical confirmation of enterococci (colonies pro-
ducing a black precipitate). Then, presumptive Entero-
coccus spp. colonies were freshly inoculated on BHI agar
plates, which were incubated at 37 + 1 °C for 18-24 h
for their incorporation to the culture collection.

The culture collection, which was stocked in cryoin-
stant tubes (VWR International, Belgium) at — 20 °C,
was comprised of one single isolate per indicator micro-
organism and analyzed sample, which provided a culture
collection of 360 isolates. All stocked isolates were ana-
lyzed through MALDI-TOF mass spectrometry (Micro-
flex LRF, Bruker) for presumptive identity confirmation.
For this, briefly, isolates were freshly inoculated on BHI
agar plates, grown for 18-24 h at 37 + 1 °C and one col-
ony per strain was spread with a sterile toothpick on the
surface of a well of the MSP96 Bruker steel plate. Then,
1 pL of matrix solution was added to each well and dried
at room temperature in a laminar flow cabinet for 5
min. The Bruker BTS standard sample (mass calibration
standard showing a typical Escherichia coli DH5 alpha
peptide and protein profile plus additional proteins) was
inoculated in the first well of the steel plate. The spectra
interpretation was achieved by using the software
MALDI Biotyper with the commercial spectra reference
library provided by Bruker Daltonics.

Antibiotic susceptibility testing and identification of ARGs
Enterobacteriaceae and Pseudomonas spp. isolates from
the culture collection were grown in BHI broth for 18—
24 h at 37 £ 1 °C and then streaked on CHROMagar™
ESBL (CHROMagar, France) plates for the detection of
ESBL-producing strains. Pseudomonas spp. isolates were
also streaked on mSuperCarba™ (CHROMagar, France)
plates for the detection of carbapenemase-producing
strains. Chromogenic agar plates were in both cases in-
cubated at 37 + 1 °C for 18-24 h. Detection of ARGs
commonly associated with ESBL (blactx.n and blagyy)
and carbapenemase (blaoxa.so blap blaviy, blaxpc 1
and blanpn1) production phenotypes was achieved on
grown isolates by PCR as previously described, with
slight modifications (see Additional file 2: Table S4) [35-
39].

Staphylococcus spp. isolates from the culture collection
were grown in BHI broth for 18-24 h at 37 + 1 °C and
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then streaked on MRSA Chromogenic Agar Base plates
(Condalab, Spain), which were incubated at 37 + 1 °C
for 18-24 h, to detect methicillin-resistant strains.
Detection of the mecA gene was achieved on grown
isolates by PCR following the methodology previously
described (see Additional file 2: Table S4) [40].

Enterococcus spp. isolates from the culture collection
were grown in BHI broth for 18-24 h at 37 + 1 °C and
then inoculated on CHROMagar™ VRE plates (CHRO-
Magar, France), which were incubated at 37 + 1 °C for
18-24 h, to detect vancomycin-resistant strains. Detec-
tion of the vanA and vanB genes was achieved on grown
isolates by conventional PCR following the methodology
previously described (see Additional file 2: Table S4) [41,
42].

Amplification products were analyzed by electrophor-
esis in 1 x TBE buffer using 1.5% (w/v) agarose gels and
detected by UV fluorescence after GelRed (Biotium Inc.,
CA, USA) staining, according to the manufacturer’s in-
structions. The PCR 100-bp Low Ladder (Sigma-Al-
drich) was used as a molecular size marker.

In addition, a subset of 58 Enterococcus spp. isolates,
representative of the different sampling times (T1, T2,
and T3), were selected and their susceptibility to a wide
range of antibiotics was determined through the micro-
dilution method by using generic Sensititre Enterococcus
EUVENC panels (Thermo Fisher Scientific, Oregon,
USA) following the manufacturer’s instructions. After
incubation of the panel plates at 37 + 1 °C for 18-24 h,
absence/presence of growth in each well was visually
evaluated to calculate minimum inhibitory concentra-
tions of each antibiotic. ECOFF values from EUCAST
(or Clinical break points for Quinupristin.Dalfopristin,
for which an ECOFF value was not available) were used
as a threshold to rank Enterococcus isolates (n = 58) as
resistant (non-wild type phenotype, according to
EUCAST) or susceptible (wild type phenotype, according
to EUCAST) to each antibiotic (see Additional file 2:
Table S4) [43]. For Enterococcus isolates not belonging
to E. faecalis or E. faecium, the thresholds to consider
them as resistant or susceptible were fixed considering
the highest ECOFF value from the two majority species
of this genus (E. faecalis and E. faecium) in the EUCAST
database. Isolates were considered multidrug resistant
when they showed a non-wild—type phenotype against
antibiotics from three or more different classes.

Culture-independent analyses

DNA extraction

For the extraction of total metagenomic DNA, 10 mL of
BPW was added to the composite swab samples, which
were then homogenized for 1 min using a Stomacher lab
blender. Subsequently, serial dilutions were spot plated
(10 pL) on BHI agar plates, which were incubated at 30
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+ 1 °C for 18-24 h, to enumerate the microbial load in
each sample, while 10 mL aliquots were centrifuged at
6500 x g for 8 min to harvest the associated microbiota.
The cell pellets were kept at — 20 °C until further use.
The DNA was extracted from the pellets by using the
DNeasy PowerSoil kit (Qiagen GmbH, Germany) follow-
ing the manufacturer’s instructions, but conducting a
double elution step with 25 uL of 10 mM Tris-HCl, in
order to improve the DNA yield. DNA yields were mea-
sured with a Qubit fluorometer using the dsDNA HS
assay kit (Invitrogen, Thermo Fisher Scientific, USA),
while DNA quality was assessed by the 260/280 and
260/230 absorbance ratios determined by using a Nano-
Drop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Wilmintong, DE, USA). DNA quantity and
quality values are shown on an additional file (see
Additional file 8).

Library construction and shotgun sequencing

Extracted environmental DNA was employed to prepare
the 150 bp paired-end sequencing libraries using the
Ilumina Nextera XTLibrary Preparation Kit (Illumina
Inc., San Diego, CA, USA) using the method described
by Rinke et al. [44]. Sequencing was performed on the
[lumina NextSeq 500 platform using a NextSeq 500/550
High Output Reagent kit v2 (300 cycles), in accordance
with the standard Illumina sequencing protocols.

Read quality filtering

Adapter removal and quality trimming of raw reads was
performed using TrimGalore v 0.6.0 with default param-
eters (http://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/), a wrapper script for Cutadapt
v2.6 [45] and FastQC v0.11.8 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). The hu-
man and pig reference genomes, GRCh38 and Scrofa
11.1, respectively, were used to remove contaminant
reads using Bowtie2 [46] v2.3.4.3 with default parame-
ters. Resulting BAM files were processed using samtools
[47] v1.9 and converted to FastQ format using bedtools
[48] v2.27.1.

Samples with fewer than 200,000 reads were removed
for further analyses. This cut-off value was selected since
the negative controls always yielded a lower number of
reads, and it allowed to retain a sufficient number of
samples from all categories, thus allowing to extract
solid conclusions. The discarded samples included the
sequencing negative controls and 19 samples from the
processing plant (2 from T1 and 17 from T3; 5 from
equipment, 3 from floor, 4 from table, 4 from tray, and
only 1 from drain, knife, and meat categories (see Add-
itional file 1: Figure S8; see Additional file 8). Significant
correlations were found between the number of reads
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obtained and both the microbial load and DNA amount
(see Additional file 1: Figure S9).

Assembly into contigs and taxonomic annotation of reads
and contigs

Each of the samples were independently subjected to de
novo metagenomic assembly through metaSPAdes v3.13
[49] using default parameters. Filtered reads were taxo-
nomically assigned by kraken2 v2.0.8-beta software [47]
with the kraken2-microbial database (https://lomanlab.
github.io/mockcommunity/mc_databases.html). Contigs
longer than 1000 bp were taxonomically assigned using
different approaches: (i) Kraken2 v2.0.8-beta software
[50] with the kraken2-microbial database (https://
lomanlab.github.io/mockcommunity/mc_databases.
html); (ii) mmseqs2 software [51] with a database cre-
ated with bacterial amino acid sequences extracted from
the kraken2-microbial database by prodigal software
[52], using as input the amino acid sequences for the
coding regions in the contigs, extracted by prodigal; (iii)
diamond [53] blastp with the same input and database
employed for mmseqs2 analyses (see Supplementary File
X for the command line pipeline employed). The 13.dia-
mond_tax_filt.rb and 14.mmseqs_tax_filt.rb ruby scripts
(https://github.com/JoseCoboDiaz/contig_taxonomy)
were employed to filter the results obtained by mmseqs2
and diamond, which were screened to keep the genus as-
signment for a contig if at least the 90% of its coding re-
gions were assigned to the same genus. Genus level
classification of contigs obtained by at least 2 of the 3
approaches employed was kept for further analysis, by
using the 15.bin_tax.rb script (https://github.com/
JoseCoboDiaz/contig_taxonomy). The same database
was employed for the taxonomical assignment of both
reads and contigs in order to avoid biases caused by the
use of different databases. Only those reads belonging to
the kingdom Bacteria were used for further analysis.

Antibiotic resistance gene annotation

The pipeline created for the annotation of ARGs is avail-
able at https://github.com/JoseCoboDiaz/ARG_bowtie_
blast. Briefly, filtered reads were mapped against the
ResFinder [54] database using Bowtie2 [46, 55], selecting
the --very-semsitive-local parameter for bowtie2 align-
ment. The .trimmed_pairs fastq files generated by Bow-
tie2 were transformed into a fasta file where forward and
reverse reads were concatenated. This new fasta file was
used to perform a BLAST [56] against the ResFinder
database using a 90% identity cut-off and taking 100 hits
(max_target_seqs) in order to avoid problems associated
with BLAST use in local [57]. Only the first hit per se-
quence was kept for further analyses. The combination
of bowtie2 plus BLAST was previously checked with the
entire dataset, using --sensitive-local, --very-sensitive-
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local, --sensitive, and --very-sensitive parameters (these
2 last options corresponding to an end-to-end ap-
proach). It was observed that end-to-end approaches
had a lower amount of false positive hits (checked by
BLAST step) than local approaches, which use partial
read alignments as positive hits. Moreover, the use of
local approaches increased the number of detected
ARGs, and their combination with a BLAST as a
double-check step reduced the amount of false positives,
which accounted up to 20% of all ARGs found by bow-
tie2 for a 90% identity BLAST cut-off value (see
Additional file 1: Figure S10).

The document phenotypes.txt was downloaded from
the ResFinder repository (https://bitbucket.org/
genomicepidemiology/resfinder_db/src/master/) and
manually curated in order to modify the class variable,
grouping those genes that confer resistance to macro-
lides, lincosamides, streptogramins, and pleuromutilins
into the MLSP class, and those that confer resistance to
oxazolidinones into the oxazolidinone class. This last
group included cfrr genes, which confer resistance to
phenicols, lincosamides, oxazolidinones, pleuromutilins
and streptogramins, the optrA gene, which confers re-
sistance to phenicols and oxazolidinones, and the poxtA
gene, which confers resistance to phenicols, oxazolidi-
nones, and tetracyclines (see Additional file 9). This
manually curated version of phenotypes.txt was used to
create gene abundance and antibiotic resistance class
abundance matrices from the blastn-firsthit file. Abun-
dance matrices were transformed to count per million
reads (CPM) matrices for further analyses using an R-
script (https://github.com/JoseCoboDiaz/counts2CPM).

Additionally, ARGs associated with resistance to
critically important antibiotics (see Additional file 9,
sheet2), which were selected according to the World
Health Organization guidelines [26], were selected to
study the abundance and distribution of such genes
within FPE.

Taxonomic assignment of ARGs
Each .trimmed_pairs fastq file generated by bowtie2
alignment versus the ResFinder [54] database was re-
mapped against the contig file generated from the same
sample dataset, using again Bowtie2 [46, 55] v2.3.4 and
the option “--very-semsitive-local”, in order to match
each ARG-read to the contig where it was assembled.
Taxonomic assignments of ARG-carrying contigs were
matched to the output file from blastn vs Resfinder data-
base at read level obtained previously. This new blast
output file, with ARG and taxonomic information per
read, was used to quantify ARGs and AMR classes per
taxonomic group at genus level. Abundance matrices
were transformed to CPM matrices for further analyses.
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Mobilome analysis
Only contigs longer than 1000 bp were kept for the
mobilome analysis. Using the assembled contig files as
query files, plasmids were predicted by Plasflow [58],
lateral gene transfer (LGT) events were detected by
WAAFLE (https://huttenhower.sph.harvard.edu/waafle),
and integrons were predicted by Integron_Finder [59].
Using their coordinates in the contigs, coding
sequences (CDS) within LGT and integron regions were
extracted from WAAFLE and Integron_Finder output
files by using in-house ruby scripts and bedtools [48]
utilities (https://github.com/JoseCoboDiaz/ARG-contig_
mobilome_analysis). The extracted CDS fasta files were
used for BLASTn comparison against the ResFinder
database [54] using a 90% identity cut-off.

Analysis of shared contigs

All contigs longer than 1500 bp were combined in a
single multi-fasta file, and an all-against-all search was
performed with strict cut-offs of 100% identity and >
80% query coverage using BLASTn v2.8.1. Self-hits were
removed, and the number of hits was averaged across
pairwise combinations of samples.

Statistical analysis

The alpha diversity values of species and ARG richness
and the Simpson diversity indices, for both taxonomy
and resistome data, were calculated using the R package
vegan. Comparisons of alpha diversity indices were car-
ried out with the Wilcoxon signed-rank test through the
R package ggpubr [60]. p-diversity was estimated by
Principal Coordinates Analysis using Bray—Curtis dis-
similarities and the vegdist function. Within-group dis-
persion was evaluated through the betadisper function.
Both functions are located in the R package vegan. Fi-
nally, the effects of sampling time, surface type, and pro-
cessing room on sample dissimilarities were determined
by permutational multivariate analysis of variance using
distance matrices (PERMANOVA) with the adonis func-
tion in the R package vegan. The compare_means func-
tion in the R package ggpubr was used to include
statistically significant differences on boxplot figures,
which were plotted by using the R package ggplot2.

Comparisons between multiple group samples for taxa,
ARGs, resistome taxonomy, and mobilome data, includ-
ing alpha diversity and total amount of ARGs, were per-
formed by using the Kruskal-Wallis test and the post
hoc Wilcoxon signed-rank test. p values were adjusted
through the Benjamini & Hochberg [61] method, and
significance was established at p < 0.05.

Correlation analyses were performed using the
Pearson correlation coefficient, calculated with the rcorr
function in the R package Hmisc [62]. Correlograms for
the analysis of microbial persistence on FPE were
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performed using the average relative abundance values
per surface and time group obtained for both species
and ARGs.

Statistically significant differences among proportions
of phenotypically resistant isolates depending on sam-
pling time, processing room, and surface type were
assessed through the two-proportion Z test using the
prop.test function from rstatix R package applying Yates
continuity correction. Statistically significant differences
over time in the proportion of Enterococcus-resistant iso-
lates to the different antibiotics tested were analyzed
using the Fisher’s exact test with the function pairwise_
fisher_test from rstatix R package.

All analyses were carried out using R version 3.6.2 [63].
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main genera found on FPE samples along time within the same surface
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Additional file 2: Table S1. Adonis values. Table S2. Statistical analysis
for ARGs associated with Critically Important Antibiotics (CIA). Table S3.
Antibiotic concentration thresholds (ug/mL) for the categorization of
Enterococcus isolates as resistant or sensitive. Table S4. Primers used for
the detection by PCR analysis of isolates harboring different ARGs.

Additional file 3. Statistical analysis for taxonomy. The first column
indicates the genus to be compared among samples. Next columns (until
the column titled Kruskal p-value) indicate average values for each
sample group being compared. Kruskal p-value columns indicate the p-
values for the comparison between sample groups, which are presented
for each surface type and processing room in the sheets surface_time
and room_time respectively. The subsequent columns indicate p-values
from the Wilcoxon pair-wise test for each pair of sample groups, which
are also indicated on the column head. Statistical analyses performed by
sampling time are presented on the time sheet, by sampling time for
each surface type on the surface_time sheet, by surface type for each of
the three time groups on the TX_surface sheets, by sampling time for
each processing room on the room_time sheet, and by processing room
for each of the three time groups on the TX_room sheets. NaN means
not a number, and indicates those cases where statistical analyses could
not be performed due to zero values on each sample to be compared.
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Additional file 4. Statistical analysis for ARG classes. The first column
indicates the ARG class to be compared among samples. Next columns
(until the column titled Kruskal p-value) indicate average values for each
sample group being compared. Kruskal p-value columns indicate the p-
values for the comparison between sample groups, which are presented
for each surface type and processing room on the sheets surface_time
and room_time respectively. The subsequent columns indicate p-values
from the Wilcoxon pair-wise test for each pair of sample groups, which
are also indicated on the column head. Statistical analyses performed by
sampling time are presented on the time sheet, by sampling time for
each surface type on the surface_time sheet, by surface type for each of
the three time groups on the TX_surface sheets, by sampling time for
each room on the room_time sheet, and by processing room for each of
the three time groups on the TX_room sheets. NaN means not a number,
and indicates those cases where statistical analyses could not be per-
formed due to zero values on each sample to be compared.

Additional file 5. Statistical analysis for ARG and taxonomical
assignments. Columns from C to H indicate average values for ARG
classes and taxonomic assignments per sampling time and food contact
status (NFCS: non food contact surfaces; FCS: food contact surfaces).
Columns | and J indicate p-values obtained from Kruskal-Wallis analyses
within FCS and within NFCS samples, respectively, to analyze significant
differences across time. Columns from K to P indicate p-values from Wil-
coxon pair-wise tests performed for each pair of Time samples within
NFCS and within FCS samples. Columns from Q to S indicate p-values
from Wilcoxon pair-wise tests performed for NFCS versus FCS samples for
each Time group. NaN means not a number, and indicates those cases
where statistical analyses could not be performed due to zero values on
each sample to be compared.

Additional file 6. Statistical analysis for ARGs. The first column indicates
the ARGs to be compared among samples, while the second column
indicates the ARG class they belongs to. Next columns (until the column
titled Kruskal p-value, not included) indicate average values for each
sample group being compared. Kruskal p-value columns indicate the p-
values for the comparison between sample groups, which are presented
for each surface type and each processing room on the sheets
surface_time and room_time respectively. The subsequent columns
indicate p-values from the Wilcoxon pair-wise test for each pair of sample
groups, which are also indicated on the column head. Statistical analyses
performed by sampling time are presented on the time sheet, by sam-
pling time for each surface type on the surface_time sheet, by surface
type for each of the three time groups on the TX_surface sheets, by sam-
pling time for each processing room on the room_time sheet, and by
processing room for each of the three time groups on the TX_room
sheets. NaN means not a number, and indicates those cases where statis-
tical analyses could not be performed due to zero values on each sample
to be compared.

Additional file 7. LGTs-Integrons. Blastn results for those LGT and inte-
gron regions associated with ARGs. The first column indicates the contig
name, while columns B to E indicate the origin of the sample where the
contig was occurring (surface type, processing room, day of visit, sam-
pling time). Column F indicates the best match obtained by blastn versus
the ResFinder database, while columns G to P indicate the parameters of
the alignment obtained by blastn. Columns Q to T show the hierarchical
classification of the gene obtained as the best match hit, according to
Supp. File 4. Column U indicates the genomic location obtained for the
contig by the Plasflow pipeline. Columns V and W show the CladeA
(host) and CladeB (source) for the lateral gene transfer (LGT) events de-
tected. Rows highlighted in orange or yellow indicate contigs that con-
tain more than one ARG within their integron region.

Additional file 8. Samples Metadata, DNA quantity and quality, reads
and information on the culture-dependent approach. Columns from A to
G indicate sample names together with their temporal and spatial loca-
tion. Columns from H to N correspond to parameters related to the DNA
extraction process and the total and filtered reads obtained after shotgun
sequencing. Columns from O to Z detail the occurrence of different mi-
croorganisms in the culture dependent analyses, their phenotypic resist-
ance to specific antibiotics, as revealed through their growth on selective

agar plates, and the detection of ARGs. Resistant Pseudomonas spp. iso-
lates harboring ARGs for -lactams and carbapenems were not detected.

Additional file 9. Phenotypes table. Document phenotypes.txt
downloaded from the ResFinder repository (https://bitbucket.org/
genomicepidemiology/resfinder_db/src/master/) and manually curated in
order to modify the class variable, grouping those genes that confer
resistance to macrolides, lincosamides, streptogramins and pleuromutilins
into the MLSP class, and those that confer resistance to oxazolidinones
into the oxazolidinone class. This last group included cfr genes, which
confer resistance to phenicols, lincosamides, oxazolidinones,
pleuromutilins and streptogramins, the optrA gene, which confers
resistance to phenicols and oxazolidinones, and the poxtA gene, which
confers resistance to phenicols, oxazolidinones and tetracyclines.
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