10 research outputs found

    Directing peptide crystallization through curvature control of nanotubes ‡

    Get PDF
    International audienceIn the absence of efficient crystallization methods, the molecular structures of fibrous assemblies have so far remained rather elusive. In this paper, we present a rational method to crystallize the lanreotide octapeptide by modification of a residue involved in a close contact. Indeed, we show that it is possible to modify the curvature of the lanreotide nanotubes and hence their diameter. This fine tuning leads to crystallization because the radius of curvature of the initially bidimensional peptide wall can be increased up to a point where the wall is essentially flat and a crystal is allowed to grow along a third dimension. By comparing X-ray diffraction data and Fourier transform Raman spectra, we show that the nanotubes and the crystals share similar cell parameters and molecular conformations, proving that there is indeed a structural continuum between these two morphologies. These results illustrate a novel approach to crystallization and represent the first step towards the acquisition of an Å-resolution structure of the lanreotide nanotubes β-sheet assembly

    Anti-HLA I antibodies induce VEGF production by endothelial cells, which increases proliferation and paracellular permeability

    No full text
    Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation

    Sirolimus and everolimus reduce albumin endocytosis in proximal tubule cells via an angiotensin II-dependent pathway

    No full text
    The proliferation signal inhibitors (PSIs) sirolimus (SRL) and everolimus (ERL) often induce proteinuria due to glomerular but also tubular dysfunction in transplant patients. The beneficial effect of angiotensin converting enzyme inhibitors (ACE-I) and angiotensin II (Ang II) type 1 receptor blockers (ARB) has been reported

    Proliferation signal inhibitor-induced decrease of vascular endothelial cadherin expression and increase of endothelial permeability in vitro are prevented by an anti-oxidant

    No full text
    BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC

    Glucocerebroside inhibits NADPH oxidase activation in cell-free system.

    Get PDF
    International audienceWe reported earlier that monocytes and macrophages from patients with type I Gaucher disease have a decreased capacity to generate superoxide anion (O(2)(-)) on stimulation with opsonized S. aureus or formyl-methionyl-leucyl-phenylalanine. In this study, various forms of the cell-free assay system were used to probe the hypothesis that glucocerebroside (GC) accumulating in Gaucher patients' phagocytes may interfere with the activation of NADPH oxidase. Xanthine/xanthine oxidase assay was applied to explore the possibility that GC may scavenge O(2)(-). We found that addition of GC to the crude, semirecombinant or fully purified cell-free systems inhibited activation of NADPH oxidase in a concentration-dependent manner. The inhibitory effect of GC could be overcome by increased concentrations of p47(phox) and p67(phox). In contrast, O(2)(-) generation was not decreased by GC added to the assembled, catalytically active enzyme complex. In the xanthine/xanthine oxidase system, GC had no effect on the generation of O(2)(-). These data indicate that assembly of the respiratory burst oxidase of phagocytic cells may be a possible target of the pathologic actions of GC

    Structural role of counterions adsorbed on self-assembled peptide nanotubes.

    No full text
    International audienceAmong noncovalent forces, electrostatic ones are the strongest and possess a rather long-range action. For these reasons, charges and counterions play a prominent role in self-assembly processes in water and therefore in many biological systems. However, the complexity of the biological media often hinders a detailed understanding of all the electrostatic-related events. In this context, we have studied the role of charges and counterions in the self-assembly of lanreotide, a cationic octapeptide. This peptide spontaneously forms monodisperse nanotubes (NTs) above a critical concentration when solubilized in pure water. Free from any screening buffer, we assessed the interactions between the different peptide oligomers and counterions in solutions, above and below the critical assembly concentration. Our results provide explanations for the selection of a dimeric building block instead of a monomeric one. Indeed, the apparent charge of the dimers is lower than that of the monomers because of strong chemisorption. This phenomenon has two consequences: (i) the dimer-dimer interaction is less repulsive than the monomer-monomer one and (ii) the lowered charge of the dimeric building block weakens the electrostatic repulsion from the positively charged NT walls. Moreover, additional counterion condensation (physisorption) occurs on the NT wall. We furthermore show that the counterions interacting with the NTs play a structural role as they tune the NTs diameter. We demonstrate by a simple model that counterions adsorption sites located on the inner face of the NT walls are responsible for this size control

    Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice. role of microbiome

    No full text
    It has been suggested that exercise training and probiotic supplementation could decelerate the progress of functional and biochemical deterioration in APP/PS1 transgenic mice (APP/PS1TG). APP/PS1TG mice were subjected to exercise training and probiotic treatments and functional, biochemical and microbiome markers were analyzed. Under these conditions the mice significantly outperformed controls on The Morris Maze Test, and the number of beta-amyloid plaques decreased in the hippocampus. B. thetaiotaomicron levels correlated highly with the results of the Morris Maze Test (p < 0.05), and this group of bacteria was significantly elevated in the microbiome of the APP/PS1TG mice compared to the wild type. L. johnsonii levels positively correlated with the beta amyloid content and area. Data revealed that exercise and probiotic treatment can decrease the progress of Alzheimer's Disease and the beneficial effects could be partly mediated by alteration of the microbiome

    Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact.

    No full text
    International audienceSupramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters

    Structural Role of Counterions Adsorbed on Self-Assembled Peptide Nanotubes

    No full text
    Among noncovalent forces, electrostatic ones are the strongest and possess a rather long-range action. For these reasons, charges and counterions play a prominent role in self-assembly processes in water and therefore in many biological systems. However, the complexity of the biological media often hinders a detailed understanding of all the electrostatic-related events. In this context, we have studied the role of charges and counterions in the self-assembly of lanreotide, a cationic octapeptide. This peptide spontaneously forms monodisperse nanotubes (NTs) above a critical concentration when solubilized in pure water. Free from any screening buffer, we assessed the interactions between the different peptide oligomers and counterions in solutions, above and below the critical assembly concentration. Our results provide explanations for the selection of a dimeric building block instead of a monomeric one. Indeed, the apparent charge of the dimers is lower than that of the monomers because of strong chemisorption. This phenomenon has two consequences: (i) the dimer–dimer interaction is less repulsive than the monomer–monomer one and (ii) the lowered charge of the dimeric building block weakens the electrostatic repulsion from the positively charged NT walls. Moreover, additional counterion condensation (physisorption) occurs on the NT wall. We furthermore show that the counterions interacting with the NTs play a structural role as they tune the NTs diameter. We demonstrate by a simple model that counterions adsorption sites located on the inner face of the NT walls are responsible for this size control
    corecore