76 research outputs found

    The putative role of ovary removal and progesterone when considering the effect of formaldehyde exposure on lung inflammation induced by ovalbumin

    Get PDF
    OBJECTIVE: Formaldehyde exposure during the menstrual cycle is known to affect the course of allergic lung inflammation. Because our previous data demonstrated that formaldehyde combined with an ovariectomy reduced allergic lung inflammation, we investigated the putative role of ovary removal and progesterone treatment when considering the effect of formaldehyde on allergic lung inflammation. METHOD: Ovariectomized rats and their matched controls were exposed to formaldehyde (1%, 3 days, 90 min/ day) or vehicle, and immediately after exposure, the rats were sensitized to ovalbumin by a subcutaneous route. After 1 week, the rats received a booster by the same route, and after an additional week, the rats were challenged with ovalbumin (1%) by an aerosol route. The leukocyte numbers, interleukin-10 (IL-10) release, myeloperoxidase activity, vascular permeability, ex vivo tracheal reactivity to methacholine and mast cell degranulation were determined 24 h later. RESULTS: Our results showed that previous exposure to formaldehyde in allergic rats decreased lung cell recruitment, tracheal reactivity, myeloperoxidase activity, vascular permeability and mast cell degranulation while increasing IL-10 levels. Ovariectomy only caused an additional reduction in tracheal reactivity without changing the other parameters studied. Progesterone treatment reversed the effects of formaldehyde exposure on ex vivo tracheal reactivity, cell influx into the lungs and mast cell degranulation. CONCLUSION: In conclusion, our study revealed that formaldehyde and ovariectomy downregulated allergic lung inflammation by IL-10 release and mast cell degranulation. Progesterone treatment increased eosinophil recruitment and mast cell degranulation, which in turn may be responsible for tracheal hyperreactivity and allergic lung inflammation

    Aerobic Exercise Attenuated Bleomycin-Induced Lung Fibrosis in Th2-Dominant Mice

    Get PDF
    Introduction The aim of this study was to investigate the effect of aerobic exercise (AE) in reducing bleomycin- induced fibrosis in mice of a Th2-dominant immune background (BALB/c). Methods BALB/c mice were distributed into: sedentary, control (CON), Exercise-only (EX), sedentary, bleomycin-treated (BLEO) and bleomycin-treated+exercised (BLEO+EX);(n = 8/group). Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg), AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test) and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL). Results At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001) and also in the lung parenchyma (p<0.001). In BAL, a decreased number of total leukocytes (p<0.01), eosinophils (p<0.001), lymphocytes (p<0.01), macrophages (p<0.01), and neutrophils (p<0.01), as well as reduced pro-inflammatory cytokines (CXCL-1;p<0.01), (IL-1 beta;p<0.001), (IL-5;p<0.01), (IL-6;p<0.001), (IL-13;p<0.01) and pro-fibrotic growth factor IGF-1 (p<0.001) were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001). Conclusion AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15-44 days post injury) attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model

    Photobiomodulation Therapy Restores IL-10 Secretion in a Murine Model of Chronic Asthma: Relevance to the Population of CD4+CD25+Foxp3+ Cells in Lung.

    Get PDF
    It is largely known that photobiomodulation (PBM) has beneficial effects on allergic pulmonary inflammation. Our previous study showed an anti-inflammatory effect of the PBM in an acute experimental model of asthma, and we see that this mechanism is partly dependent on IL-10. However, it remains unclear whether the activation of regulatory T cells is mediated by PBM in a chronic experimental model of asthma. In this sense, the objective of this study was to verify the anti-inflammatory role of the PBM in the pulmonary inflammatory response in a chronic experimental asthma model. The protocol used for asthma induction was the administration of OVA subcutaneously (days 0 and 14) and intranasally (3 times/week, for 5 weeks). On day 50, the animals were sacrificed for the evaluation of the different parameters. The PBM used was the diode, with a wavelength of 660 nm, a power of 100 mW, and 5 J for 50 s/point, in three different application points. Our results showed that PBM decreases macrophages, neutrophils, and lymphocytes in the bronchoalveolar lavage fluid (BALF). Moreover, PBM decreased the release of cytokines by the lung, mucus, and collagen in the airways and pulmonary mechanics. When we analyzed the percentage of Treg cells in the group irradiated with laser, we verified an increase in these cells, as well as the release of IL-10 in the BALF. Therefore, we conclude that the use of PBM therapy in chronic airway inflammation attenuated the inflammatory process, as well as the pulmonary functional and structural parameters, probably due to an increase in Treg cells.post-print1951 K

    Hydroquinone and phenol exposure on pulmonary inflammatory response induced by bacteria

    Get PDF
    The high toxicity induced by occupational and environmental benzene exposure lead to its use restriction. However, at these conditions, neuronal and immune toxicity has been described. It is well known that benzene metabolites, such as hydroxyl compounds phenol (PHE) and hydroquinone (HQ), are responsible for immunotoxicity. In this context, it has shown herein that male Wistar rats exposed to HQ (doses of 5 or 10 mg/kg/day; 13 days with 2-day intervals every 5 doses) presented marked reduction in the number of mononuclear (MN) and polymorphonuclear (PMN) leukocytes in the bronchoalveolar fluid 24 hours after inhalation of Lipopolyssacaride of Salmonella abortus (LPS; 100 µg/mL). On the other hand, leukocyte migration into inflamed lungs was not altered in FE exposed rats, since values obtained were similar to those detected in control animals. Simultaneous exposure to HQ and PHE (5 mg/kg each compound) maintained the decreased number of MN cells observed in HQ exposed rats and potentiated the reduction of PMN cells induced by HQ exposure. The impaired leukocyte migration into inflamed lung did not reflect alterations on number of circulating cells. Moreover, it is important to emphasize that schedule of intoxication did not alter the functional ability of liver and kidney, as detected by normal activity of transaminases and creatinine concentration in the serum. Therefore, it is shown herein that in vivo exposures to lower doses of HQ do not alter end points used as biological indicators of toxicity, nevertheless toxic effects are evident after a host defense.A gravidade dos efeitos causados pela exposição ambiental e ocupacional ao benzeno determinou o controle de sua utilização. No entanto, mesmo nestas condições, toxicidade ao sistema imune e nervoso tem sido descrita. A toxicidade do benzeno é determinada pelos seus produtos de biotransformação, em que fenol (FE) e hidroquinona (HQ) têm papel relevante na imunotoxicidade. Neste contexto, o presente trabalho mostra que a exposição de ratos Wistar, machos, a doses de 5 ou 10 mg/kg de HQ (via i.p., uma vez ao dia, 13 doses consecutivas, com intervalos de 2 dias a cada 5 doses) provocou reduções acentuadas no influxo de leucócitos polimorfonucleares (PMN) e mononucleares (MN) para o pulmão 24 horas após inalação de Lipopolissacarídeo (LPS) de Salmonella abortus. Diferentemente, a migração de leucócitos em animais expostos ao FE não foi alterada. A exposição a ambos os agentes químicos simultaneamente (dose de 5 mg/kg cada) manteve a redução na migração de MN detectada em animais expostos à HQ e potencializou o efeito inibitório da HQ sobre a migração de leucócitos PMN. Os prejuízos nas migrações de leucócitos não foram decorrentes de modificações no número destas células na circulação. É importante ressaltar que os efeitos foram induzidos por doses dos agentes químicos que não causaram prejuízo à função hepática ou renal, determinados pela atividade das transaminases hepáticas e a concentração de creatinina no soro. Em conjunto, os dados obtidos mostram a exposição a baixas doses de HQ não provoca alterações nos parâmetros empregados como indicadores de toxicidade. No entanto, os efeitos tóxicos são manifestados resposta do organismo ao trauma

    The putative role of ovary removal and progesterone when considering the effect of formaldehyde exposure on lung inflammation induced by ovalbumin

    Get PDF
    OBJECTIVE: \ud \ud Formaldehyde exposure during the menstrual cycle is known to affect the course of allergic lung inflammation. Because our previous data demonstrated that formaldehyde combined with an ovariectomy reduced allergic lung inflammation, we investigated the putative role of ovary removal and progesterone treatment when considering the effect of formaldehyde on allergic lung inflammation.\ud \ud METHOD: \ud \ud Ovariectomized rats and their matched controls were exposed to formaldehyde (1%, 3 days, 90 min/day) or vehicle, and immediately after exposure, the rats were sensitized to ovalbumin by a subcutaneous route. After 1 week, the rats received a booster by the same route, and after an additional week, the rats were challenged with ovalbumin (1%) by an aerosol route. The leukocyte numbers, interleukin-10 (IL-10) release, myeloperoxidase activity, vascular permeability, ex vivo tracheal reactivity to methacholine and mast cell degranulation were determined 24 h later.\ud \ud RESULTS: \ud \ud Our results showed that previous exposure to formaldehyde in allergic rats decreased lung cell recruitment, tracheal reactivity, myeloperoxidase activity, vascular permeability and mast cell degranulation while increasing IL-10 levels. Ovariectomy only caused an additional reduction in tracheal reactivity without changing the other parameters studied. Progesterone treatment reversed the effects of formaldehyde exposure on ex vivo tracheal reactivity, cell influx into the lungs and mast cell degranulation.\ud \ud CONCLUSION: \ud \ud In conclusion, our study revealed that formaldehyde and ovariectomy downregulated allergic lung inflammation by IL-10 release and mast cell degranulation. Progesterone treatment increased eosinophil recruitment and mast cell degranulation, which in turn may be responsible for tracheal hyperreactivity and allergic lung inflammationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP no.09/51886-3)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP no. 2011/51711-9)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP no. 2008/5108-3

    Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by irreversible airflow limitation, airway inflammation and remodeling, and enlargement of alveolar spaces. COPD is in the top five leading causes of deaths worldwide and presents a high economic cost. However, there are some preventive measures to lower the risk of developing COPD. Low-level laser therapy (LLLT) is a new effective therapy, with very low cost and no side effects. So, our objective was to investigate if LLLT reduces pulmonary alterations in an experimental model of COPD. C57BL/6 mice were submitted to cigarette smoke for 75 days (2x/day). After 60 days to smoke exposure, the treated group was submitted to LLLT (diode laser, 660 nm, 30 mW, and 3 J/cm(2)) for 15 days and euthanized for morphologic and functional analysis of the lungs. Our results showed that LLLT significantly reduced the number of inflammatory cells and the proinflammatory cytokine secretion such as IL-1 beta, IL-6, and TNF-alpha in bronchoalveolar lavage fluid (BALF). We also observed that LLLT decreased collagen deposition as well as the expression of purinergic P2X7 receptor. On the other hand, LLLT increased the IL-10 release. Thus, LLLT can be pointed as a promising therapeutic approach for lung inflammatory diseases as COPD.Sao Paulo Research Foundation (FAPESP) [2012/16498-5, 2012/15165-2]FAPESP [2015/23152-6, 2014/14604-8, 2015/13486-4]Univ Nove Julho UNINOVE, Post Grad Program Biophoton Appl Hlth Sci, Sao Paulo, SP, BrazilBrazilian Inst Teaching & Res Pulm & Exercise Imm, Sao Jose Dos Campos, SP, BrazilUniv Nove Julho UNINOVE, Masters Degree & PhD Program Rehabil Sci, Expt Cardioresp Physiol Lab, Sao Paulo, SP, BrazilUniv Calif San Diego UCSD Hlth Sci, Div Trauma Surg Crit Care Burns & Acute Care Surg, Dept Surg, San Diego, CA USAFed Univ Sao Paulo UNIFESP, Inst Sci & Technol, Sao Jose Dos Campos, SP, BrazilUniv Brasil, Postgrad Program Bioengn, Sao Paulo, SP, BrazilFed Univ Sao Paulo UNIFESP, Postgrad Program Sci Human Movement & Rehabil, Santos, SP, BrazilFed Univ Sao Paulo UNIFESP, Inst Sci & Technol, Sao Jose Dos Campos, SP, BrazilFed Univ Sao Paulo UNIFESP, Postgrad Program Sci Human Movement & Rehabil, Santos, SP, BrazilFAPESP [2012/16498-5, 2012/15165-2]FAPESP [2015/23152-6, 2014/14604-8, 2015/13486-4]Web of Scienc

    Aerobic exercise inhibits acute lung injury: from mouse to human evidence Exercise reduced lung injury markers in mouse and in cells

    Get PDF
    Acute respiratory distress syndrome (ARDS) is defined as hypoxemic respiratory failure with intense pulmonary inflammation, involving hyperactivation of endothelial cells and neutrophils. Given the anti-inflammatory effects of aerobic exercise (AE), this study investigated whether AE performed daily for 5 weeks would inhibit extra-pulmonary LPS-induced ARDS. C57Bl/6 mice were distributed into Control, Exercise, LPS and Exercise+ LPS groups. AE was performed on a treadmill for 5x/week for four weeks before LPS administration. 24hours after the final AE physical test, animals received 100ug of LPS intra-peritoneally. In addition, whole blood cell culture, neutrophils and human endothelial cells were pre-incubated with IL-10, an anti-inflammatory cytokine induced by exercise. AE reduced total protein levels (p<0.01) and neutrophil accumulation in bronchoalveolar lavage (BAL) (p<0.01) and lung parenchyma (p<0.01). AE reduced BAL inflammatory cytokines IL-1 beta, IL-6 and GM-CSF (p<0.001), CXCL1/KC, IL-17, TNF-alpha and IGF-1 (p<0.01). Systemically, AE reduced IL-1 beta, IL-6 and IFN-gamma (p<0.001), CXCL1/KC (p<0.01) and TNF-alpha (p<0.05). AE increased IL-10 levels in serum (p<0.001) and BAL (p<0.001). Furthermore, AE increased superoxide dismutase SOD (p<0.01) and decreased superoxide anion accumulation in the lungs (p<0.01). Lastly, pre-incubation with IL-10 significantly reduced LPS-induced activation of whole blood cells, neutrophils and HUVECs, as observed by reduced production of IL-1 beta, IL-6, IL-8 and TNF-alpha. Our data suggest that AE inhibited LPS-induced lung inflammation by attenuating inflammatory cytokines and oxidative stress markers in mice and human cell culture via enhanced IL-10 production.Sao Paulo Research Foundation (FAPESP) [2012/15165-2]Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) [311335-2015-2]Comissao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [12804/13-4, 1303/13-9]FAPESP [2013/24076-6, 2014/23196-0, 2012/14604-8, 2012/25435-7, 2012/24880-7]CAPESNove Julho Univ, Sao Paulo, SP, BrazilBrazilian Inst Teaching & Res Pulm & Exercise Imm, Sao Jose Dos Campos, SP, BrazilFed Univ Sao Paulo UNIFESP, Postgrad Program Sci Human Movement & Rehabil, Santos, SP, BrazilUniv Brasil, Sao Paulo, SP, BrazilUniv Sao Paulo, Sch Med, Dept Pathol LIM 59, Sao Paulo, SP, BrazilUniv Fed Lavras UFLA, Sci Dept Hlth, Lavras, MG, BrazilFed Univ Sao Paulo UNIFESP, Campus Sao Paulo, Sao Paulo, SP, BrazilHarbor UCLA Med Ctr, Div Resp & Crit Care Physiol & Med, Los Angeles Biomed Res Inst, Torrance, CA 90509 USAUniv Tubingen, Inst Clin & Expt Transfus Med IKET, Tubingen, GermanyFed Univ Sao Paulo UNIFESP, Postgrad Program Sci Human Movement & Rehabil, Santos, SP, BrazilFed Univ Sao Paulo UNIFESP, Campus Sao Paulo, Sao Paulo, SP, BrazilFAPESP [2012/15165-2]CNPq [311335-2015-2]CAPES [12804/13-4, 1303/13-9]FAPESP [2013/24076-6, 2014/23196-0, 2012/14604-8, 2012/25435-7, 2012/24880-7]Web of Scienc

    Female sex hormones mediate the allergic lung reaction by regulating the release of inflammatory mediators and the expression of lung E-selectin in rats

    Get PDF
    Abstract\ud \ud Background\ud Fluctuations of estradiol and progesterone levels caused by the menstrual cycle worsen asthma symptoms. Conflicting data are reported in literature regarding pro and anti-inflammatory properties of estradiol and progesterone.\ud \ud \ud Methods\ud Female Wistar rats were ovalbumin (OVA) sensitized 1 day after resection of the ovaries (OVx). Control group consisted of sensitized-rats with intact ovaries (Sham-OVx). Allergic challenge was performed by aerosol (OVA 1%, 15 min) two weeks later. Twenty four hours after challenge, BAL, bone marrow and total blood cells were counted. Lung tissues were used as explants, for expontaneous cytokine secretion in vitro or for immunostaining of E-selectin.\ud \ud \ud Results\ud We observed an exacerbated cell recruitment into the lungs of OVx rats, reduced blood leukocytes counting and increased the number of bone marrow cells. Estradiol-treated OVx allergic rats reduced, and those treated with progesterone increased, respectively, the number of cells in the BAL and bone marrow. Lungs of OVx allergic rats significantly increased the E-selectin expression, an effect prevented by estradiol but not by progesterone treatment. Systemically, estradiol treatment increased the number of peripheral blood leukocytes in OVx allergic rats when compared to non treated-OVx allergic rats. Cultured-BAL cells of OVx allergic rats released elevated amounts of LTB4 and nitrites while bone marrow cells increased the release of TNF-α and nitrites. Estradiol treatment of OVx allergic rats was associated with a decreased release of TNF-α, IL-10, LTB4 and nitrites by bone marrow cells incubates. In contrast, estradiol caused an increase in IL-10 and NO release by cultured-BAL cells. Progesterone significantly increased TNF- α by cultured BAL cells and bone marrow cells.\ud \ud \ud Conclusions\ud Data presented here suggest that upon hormonal oscillations the immune sensitization might trigger an allergic lung inflammation whose phenotype is under control of estradiol. Our data could contribute to the understanding of the protective role of estradiol in some cases of asthma symptoms in fertile ans post-menopausal women clinically observed.The authors gratefully acknowledge Dr. Gabriela Cavriani for her help in this\ud study and Zilma Lucia da Silva (Depth of Pharmacology) of Institute of\ud Biomedical Sciences of University of São Paulo (São Paulo, Brazil) for\ud technical assistance and for Mayara Munhóz de Assis Ramos and Suzanne\ud Kane of Los Angeles, California for further English revisions to our\ud manuscript. This study was supported by Fundação de Amparo à Pesquisa\ud do Estado de São Paulo (FAPESP) Grants 2001/13384-4, 2004/14128-0, 2006/\ud 55950-0, 2006/14128-4, 2007/55631-4, 2009/51886-3 and 2009/07208-0 and\ud CAPES (PNPD 0188085, 02610/09-4). W. Tavares de Lima is a fellow\ud researcher of CNPq

    Long-term amphetamine treatment exacerbates inflammatory lung reaction while decreases airway hyper-responsiveness after allergic stimulus in rats

    Get PDF
    Asthma is an allergic lung disease can be modulated by drugs that modify the activity of central nervous system (CNS) such as amphetamine (AMPH). AMPH is a highly abused drug that exerts potent effects on behavior and immunity. In this study we investigated the mechanism involved in the effects of long-term AMPH treatment on the increased magnitude of allergic lung response. We evaluated mast cells degranulation, cytokines release, airways responsiveness and, expression of adhesion molecules. Male Wistar rats were treated with AMPH or vehicle (PBS) for 21 days and sensitized with ovalbumin (OVA) one week after the first injection of vehicle or AMPH. Fourteen days after the sensitization, the rats were challenged with an OVA aerosol, and 24 h later their parameters were analyzed. In allergic rats, the treatment with AMPH exacerbated the lung cell recruitment due increased expression of ICAM-1, PECAM-1 and Mac-1 in granulocytes and macrophages recovered from bronchoalveolar lavage. Elevated levels of IL-4, but decreased levels of IL-10 were also found in samples of lung explants after AMPH treatment. Conversely, the ex-vivo tracheal hyper-responsiveness to methacholine (MCh) was reduced by AMPH treatment, whereas the force contraction of tracheal segments due to in vitro antigen challenge remained unaltered. Our findings suggest that lung inflammation and airway hyper-responsiveness due to OVA challenge are under the distinct control of AMPH during long-term treatment. Our data strongly indicate that AMPH positively modulates allergic lung inflammation via the increase of ICAM-1, PECAM-1, Mac-1 and IL-4. AMPH also abrogates the release of the anti-inflammatory cytokine IL-10. (c) 2012 Elsevier B.V. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2007/55631-4, 2009/51886-3, 2009/07208-0, 2008/50766-1]CNPq [300764/2010-3]CAPES [02610/09-4

    Modernist Toilette: Degas, Woolf, Lawrence

    Get PDF
    <p>COPD animals were submitted to therapeutic protocols as described in materials and methods. Further, all animals were euthanized, lungs were obtained and sections were stained by PAS (Periodic Acid Schiff) as described in methods. In A) representative graphs and B) photomicrographs of PAS stained sections. Data representative of two experiments. n = 5–8 animals per group. One-way ANOVA.</p
    corecore