447 research outputs found
Clustered-loss retransmission protocol over wireless TCP
Transmission Control Protocol (TCP) performs well in traditional wired networks where the packet loss rate is low. However, in heterogeneous wired/wireless networks, the high packet loss rate over wireless links may result in excessive invocation of the congestion control algorithm, thus deteriorating the performance of TCP. In this paper, a novel localized link layer retransmission protocol, called Clustered-loss Retransmission Protocol (CLRP), is proposed. CLRP consists of three protocol components, namely, TCP-FH deployed on a fixed host, TCP-MH deployed on a mobile host and CLRP-BS deployed on a base station. CLRP can provide not only explicit distinction between congestion and packet corruption losses, and effective multiple wireless loss information for retransmissions, but also better retransmission control for wireless losses. Thus it is well suited to wireless networks, in which packet loss and bursty packet corruption is a serious problem. Moreover, CLRP does not require any modifications to TCP deployed on fixed hosts. © 2005 IEEE.published_or_final_versio
Design of SNACK mechanism for wireless TCP with New Snoop
TCP is the most widely adopted transport layer communication protocol. In heterogeneous wired/wireless networks, however, the high packet loss rate over wireless links can trigger unnecessary execution of TCP congestion control algorithms, resulting in performance degradation. TCP performs poorly on wireless links with bursts losses, when it is forced to rely on limited information available from batched acknowledgements, (i.e., multiple packets are acknowledged with one acknowledgment packet). In this paper, a Selective Negative Acknowledgement (SNACK) mechanism is designed to overcome the limitation of batched acknowledgments. A new link layer retransmission protocol, called, SNACK-NS (New Snoop), is proposed. Through the detection and retransmission functions that are provided by the two protocol components of SNACK-NS, namely, SNACK-Snoop and SNACK-TCP, the transmission performance of TCP over wireless network is greatly enhanced in both fixed host (FH) to mobile host (MH) and MH to FH transmissions.published_or_final_versio
A multiplex-multicast scheme that improves system capacity of voice-over-IP on wireless LAN by 100%
Voice-over-IP (VoIP) is.an important application on the Internet. With the emergence of WLAN technology and its various advantages compared with the traditional wired LAN, it is fast becoming the 'last-mile' of choice for the overall Internet infrastructure. This work considers the support of VoIP over 802.11b WLAN. We show that although the raw WLAN capacity can potentially support more than 500 VoIP sessions, various overheads bring this down to only 12 VoIP sessions when using GSM 6.10 codec. We propose a novel multiplexing scheme for VoIP which exploits multicasting over WLAN for the downlink VoIP traffic. This scheme can achieve nearly 100% improvement in system capacity. In addition, we present results showing that the delay and delay jitter introduced by the proposed scheme are small. We believe that the scheme can reduce the blocking probability of VoIP sessions in an enterprise WLAN significantly.published_or_final_versio
Federated edge learning with misaligned over-the-air computation
Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the uplink of federated edge learning (FEEL). OAC, however, hinges on accurate channel-gain precoding and strict synchronization among edge devices, which are challenging in practice. As such, how to design the maximum likelihood (ML) estimator in the presence of residual channel-gain mismatch and asynchronies is an open problem. To fill this gap, this paper formulates the problem of misaligned OAC for FEEL and puts forth a whitened matched filtering and sampling scheme to obtain oversampled, but independent samples from the misaligned and overlapped signals. Given the whitened samples, a sum-product ML (SP-ML) estimator and an aligned-sample estimator are devised to estimate the arithmetic sum of the transmitted symbols. In particular, the computational complexity of our SP-ML estimator is linear in the packet length, and hence is significantly lower than the conventional ML estimator. Extensive simulations on the test accuracy versus the average received energy per symbol to noise power spectral density ratio (EsN0) yield two main results: 1) In the low EsN0 regime, the aligned-sample estimator can achieve superior test accuracy provided that the phase misalignment is not severe. In contrast, the ML estimator does not work well due to the error propagation and noise enhancement in the estimation process. 2) In the high EsN0 regime, the ML estimator attains the optimal learning performance regardless of the severity of phase misalignment. On the other hand, the aligned-sample estimator suffers from a test-accuracy loss caused by phase misalignment
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer
Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals
Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology
(KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01
Optimizing UAV hyperspectral imaging for urban tree chlorophyll and leaf area index retrieval
202506 bcchVersion of RecordOthersThe Hong Kong Polytechnic University Faculty of Construction and Environment Start-up Fund (BE8W); FCE Young Researcher Collaborative Research Fund (WZ82)PublishedC
Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube
Molecular dynamic simulation method has been employed to consider the critical buckling force, pressure, and strain of pristine and defected single-walled carbon nanotube (SWCNT) under axial compression. Effects of length, radius, chirality, Stone–Wales (SW) defect, and single vacancy (SV) defect on buckling behavior of SWCNTs have been studied. Obtained results indicate that axial stability of SWCNT reduces significantly due to topological defects. Critical buckling strain is more susceptible to defects than critical buckling force. Both SW and SV defects decrease the buckling mode of SWCNT. Comparative approach of this study leads to more reliable design of nanostructures
Resistance of Leishmania (Viannia) braziliensis to nitric oxide: correlation with antimony therapy and TNF-α production
<p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) produced in macrophages plays a pivotal role as a leishmanicidal agent. A previous study has demonstrated that 20% of the <it>L. (V.) braziliensis </it>isolated from initial cutaneous lesions of patients from the endemic area of Corte de Pedra, Bahia, Brazil, were NO resistant. Additionally, 5 to 11% of the patients did not respond to three or more antimony treatments" (refractory patients). The aim of this study is to investigate if there is an association between the resistance of <it>L. (V.) braziliensis </it>to NO and nonresponsiveness to antimony therapy and cytokine production.</p> <p>Methods</p> <p>We evaluated the <it>in vitro </it>toxicity of NO against the promastigotes stages of <it>L. (V.) braziliensis </it>isolated from responsive and refractory patients, and the infectivity of the amastigote forms of these isolates against human macrophages. The supernatants from <it>Leishmania </it>infected macrophage were used to measure TNF-α and IL-10 levels.</p> <p>Results</p> <p>Using NaNO<sub>2 </sub>(pH 5.0) as the NO source, <it>L. (V.) braziliensis </it>isolated from refractory patients were more NO resistant (IC50 = 5.8 ± 4.8) than <it>L. (V.) braziliensis </it>isolated from responsive patients (IC50 = 2.0 ± 1.4). Four isolates were selected to infect human macrophages: NO-susceptible and NO-resistant <it>L. (V.) braziliensis </it>isolated from responsive and refractory patients. NO-resistant <it>L. (V.) braziliensis </it>isolated from refractory patients infected more macrophages stimulated with LPS and IFN-γ at 120 hours than NO-susceptible <it>L. (V.) braziliensis </it>isolated from refractory patients. Also, lower levels of TNF-α were detected in supernatants of macrophages infected with NO-resistant <it>L. (V.) braziliensis </it>as compared to macrophages infected with NO-susceptible <it>L. (V.) braziliensis </it>(p < 0.05 at 2, 24 and 120 hours), while no differences were detected in IL-10 levels.</p> <p>Conclusion</p> <p>These data suggest that NO resistance could be related to the nonresponsiveness to antimony therapy seen in American Tegumentary Leishmaniasis.</p
IL-33-mediated protection against experimental cerebral malaria is linked to induction of Type 2 innate lymphoid cells, M2 macrophages and regulatory T cells
Author Summary Cerebral malaria (CM) caused by the parasite Plasmodium sp . is a fatal disease, especially in children. Currently there is no effective treatment. We report here our investigation on the role of a recently discovered cytokine IL-33, in treating experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. IL-33 protects the mice against ECM. The protection is accompanied by a reduction of Th1 response and the enhancement of type 2 cytokine response. We also found that IL-33 mediates its protective effect by inducing a population of type 2 innate lymphoid cells (ILC2), which then polarize macrophages to alternatively-activated phenotypes (M2). M2 in turn expand regulatory T cells (Tregs) which suppress the deleterious Th1 response. Our report therefore reveals hitherto unrecognised mechanisms of the regulation of ECM and provide a novel function of IL-33
- …
