
Title Design of SNACK mechanism for wireless TCP with New Snoop

Author(s) Sun, F; Li, VOK; Liew, SC

Citation 2004 Ieee Wireless Communications And Networking
Conference, Wcnc 2004, 2004, v. 2, p. 1051-1056

Issued Date 2004

URL http://hdl.handle.net/10722/46482

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design of SNACK Mechanism for Wireless TCP
with New Snoop 1

Fanglei Sun and Victor O.K. Li

 Dept. of Electrical and Electronic Engineering
The University of Hong Kong

Hong Kong, China
Email: {flsun, vli}@eee.hku.hk

Soung C. Liew
Dept. of Information Engineering

The Chinese University of Hong Kong
Hong Kong, China

Email: soung@ie.cuhk.edu.hk

Abstract—TCP is the most widely adopted transport layer
communication protocol. In heterogeneous wired/wireless
networks, however, the high packet loss rate over wireless links
can trigger unnecessary execution of TCP congestion control
algorithms, resulting in performance degradation. TCP
performs poorly on wireless links with bursty losses, when it is
forced to rely on limited information available from batched
acknowledgements, (i.e., multiple packets are acknowledged with
one acknowledgment packet). In this paper, a Selective Negative
Acknowledgement (SNACK) mechanism is designed to overcome
the limitation of batched acknowledgments. A new link layer
retransmission protocol, called, SNACK-NS (New Snoop), is
proposed. Through the detection and retransmission functions
that are provided by the two protocol components of SNACK-
NS, namely, SNACK-Snoop and SNACK-TCP, the transmission
performance of TCP over wireless network is greatly enhanced in
both fixed host (FH) to mobile host (MH) and MH to FH
transmissions.

I. INTRODUCTION
During the past few years, the increase in the number of

competing technologies and service network models available
to the public has accelerated the growth of the wireless
Internet. The congestion control algorithms embedded in TCP
work well in wired networks in preventing congestion collapse.
One problem of TCP congestion control in heterogeneous
wired/wireless networks is that TCP regards both wired and
wireless packet losses as indications of network congestion.
Even when packet losses are due to noise in the wireless
medium rather than congestion, TCP and its extended versions,
such as TCP Reno, TCP Newreno, TCP SACK, will begin
executing their congestion control algorithms, by blindly
reducing the congestion window size. How to allow TCP to
distinguish between the losses due to congestion and those due
to packet corruption in a timely fashion is a major research
issue for wireless TCP. Several approaches [1] to address this
problem have been proposed. These approaches can be divided
into end-to-end mechanisms like Veno [2], split connections
mechanisms like M-TCP [3] and localized link layer
mechanisms like Snoop [4,5]. Performance comparisons of
some of these mechanisms were given in [1], in which the
localized link layer solution was demonstrated to be superior in
terms of throughput performance when the packet loss rate is

high [1]. In addition, these mechanisms can be implemented
easily and have fast response to wireless random losses.

In this paper, we consider the transmission between a fixed
host (FH) and a mobile host (MH) relayed through a base
station (BS), as shown in Figure 1. The main advantage of
employing a link-layer protocol for loss recovery is that it fits
naturally into the layered structure of network protocols. At the
same time, it has more control over the physical layer
protocols. The protocol that runs on top of the physical layer
has immediate knowledge of dropped frames, and thus can
respond faster than higher layer protocols. The Snoop protocol
(Snoop) installed at the link layer of a BS monitors the packets
and ACKs in both MH to FH and FH to MH directions.

For transmission from FH to MH, Snoop caches the packets
arriving at BS. When packets are lost in the link from BS to
MH, BS arranges local retransmissions based on the type of
ACKs from MH and local timers. For packets from MH to FH,
Snoop at BS adds explicit loss notification (ELN) [6] in the
ACKs to the MH, setting the value of one bit in the six
reserved bits included in a TCP header, thus allowing MH to
distinguish congestion losses from wireless random losses.
However, Snoop can only provide single packet loss
information within one local RTT (round-trip-times). Under
high loss rate wireless network environment, Snoop does not
work well because it mimics the TCP error recovery
mechanism, which is not very robust under harsh error
conditions. In bursty traffic networks, the lack of explicit and
accurate information in Snoop degrades the bandwidth
utilization sharply. Furthermore, Snoop offers great
improvement in the model of wired-cum-wireless networks.
But when used in wireless-cum-wired or wireless-cum-wireless
networks, Snoop is regarded as ineffective [7].

 When multiple packets are lost in a TCP window and
within one RTT, with the limited information available from
cumulative acknowledgments (ACKs) by TCP, the congestion
window size will be reduced continuously, degrading the
throughput nearly to zero. To overcome this limitation, a
selective acknowledgment (SACK) mechanism was proposed
in RFC 2801 [8]. In TCP SACK, several SACK blocks are
used to inform the sender about all the segments that have

1 This research is supported in part by the Areas of Excellence Scheme
established by the University Grants Committee of the Hong Kong Special
Administrative Region, China, under project No. AoE/E-01/99.

WCNC 2004 / IEEE Communications Society 1051 0-7803-8344-3/04/$20.00 © 2004 IEEE

been received successfully, which allows the sender to
retransmit only the lost segments. Each SACK block consists
of the beginning and the ending sequence number of a
consecutive packet block received by the sender, and thus the
holes between the SACK blocks are regarded as lost packets.
TCP SACK and Snoop have been combined in many papers to
enhance the TCP performance over wireless links with burtsy
losses. However, apart from other limitations of SACK itself,
such as redundant transmissions caused by using TCP options,
aggressive retransmissions in the presence of congestion and
unnecessary retransmissions when a number of successive
ACK packets are dropped in the network during a fast
recovery period [9], the mechanisms of TCP SACK and
Snoop may interfere with each other in both directions when
combating bursty wireless losses. The detailed analyses will
be presented in Section II. So, it is impractical to solve the
problem of bursty losses over wireless networks by using the
combination of TCP SACK and Snoop. Recently, much
research has been focused on designing a new ACK [10] for
wireless TCP. Unfortunately, it encounters the same problems
as TCP SACK.

In this paper, SNACK mechanism running on BS and MH
(note: as opposed to SACK running on FH and MH) is
designed to provide explicit information on multiple packet
losses over wireless links. Then, based on the SNACK
mechanism, two protocol components are proposed to
overcome the above problems. They are the new Snoop
protocol deployed on BS (SNACK-Snoop) and TCP deployed
on MH (SNACK-TCP). When handling the wireless losses, by
performing the detection and retransmission functions, faster
recovery and more effective congestion avoidance over
wireless links can be provided. In addition, in the two data
transmission directions, SNACK-Snoop and SNACK-TCP
operate similarly, differing only in the way the detection and
retransmission functions are divided. Compared with other
protocols, the analyses in Section II and the simulation results
in Section IV show that the two protocol components can
improve the network throughput and enhance the TCP

performance over wireless networks greatly.

II. RELATED WORK
 With random noise, multi-path fading and mutual user
interference in wireless channels, bursty losses may become a
tough problem for wireless TCP. The simulation-based
performance of several TCP versions over wireless networks
with and without Snoop has been analyzed on heterogeneous
networks in the transmission direction from FH to MH [11,12].
It has been found that TCP SACK is the best performing
version without Snoop, but it is the worst version with the aid
of Snoop. This result is identical with our simulation result
under a comparable network environment. Furthermore, we
find that except for TCP Vegas, the enhancement of TCP
Tahoe, Reno, Newreno and TCP SACK is limited when
implemented on networks primarily with bursty losses. In
addition, we also study the performance of the TCP versions
with and without Snoop in the direction from MH to FH. It is
puzzling that TCP SACK does not achieve additional
improvements with the help of Snoop, as shown in Figure 6.
Certainly, there are some problems with Snoop or the
interactions between Snoop and TCP SACK in heterogeneous
networks with bursty losses. So in the remainder of this section
we describe our analyses of a scenario with four packets
dropped from a window of data in both directions.

FH Snoop MH

2

3

4

5

6

7

8

9

10

11

3

3 D
4
4 D
5
5 D
6
6 D
11
12

Dup ACKs
dropped
by Snoop

FH(SACK) MH(SACK)BS

3

4

5

6

7

8

9

10

11

3

3 SACK

3 SACK

3 SACK

3 SACK

3 SACK

4
5
6
11

2

3 4
5 6

already
retransmitted
ignored by FH

FH (SACK) Snoop MH (SACK)

2

3

4

5

6

7

8

9

3

3 D
4 SACK
4 D
5 SACK
5 D
6 SACK

4 5 6

5 6

6
FH duplicates
dropped by

Snoop

Dup Acks
dropped by

Snoop

6 D
11

10

FH BS (SNACK-Snoop) MH (SNACK)

2

3

4

5

6

7

8

9

3

3 D
4
5
6
9

10

 (a) Snoop (b) SACK (c) SACK with Snoop (d) SNACK-NS

 Figure 2. Recovery from four drops in FH to MH direction

Fixed HostMobile Host Base Station

B S F H

SINK
Wireless

Link
2 Mbps
64 µs

Wired Link

10 Mbps 10 msM H

TCP Reno LLP

Wireless
Link

2 Mbps
64 µsF H

TCP Reno Wired Link

10 Mbps 10 ms B S

LLP

M H

SINK

 Figure 1. One wireless link simulation network topologies

WCNC 2004 / IEEE Communications Society 1052 0-7803-8344-3/04/$20.00 © 2004 IEEE

 From FH to MH: Figure 2 (a) shows the Snoop recovery
steps after the drops of Packets 3 to 6. Snoop maintains a cache
of unacknowledged data segments destined to MH. When
Snoop receives a duplicate acknowledgement from MH
destined for FH, it retransmits the missing segments and
suppresses the duplicate acknowledgment instead of
forwarding it to FH. Snoop also uses timeouts to locally
retransmit segments, if needed. These timeouts are less coarse
then the de facto TCP timeouts, and therefore expire sooner,
leading to a local retransmission within the time span of a TCP
timeout. It can be seen that Snoop also uses duplicate ACKs
and timeouts to retransmit the wireless losses, which mimics
the recovery mechanism of TCP. Therefore when handling
bursty losses, it is also inefficient. This also explains why TCP
Tahoe, Reno, Newreno and TCP SACK only have limited
improvements over links with bursty losses. Different from
Snoop, in Figure 2 (b), TCP SACK can retransmit the four
losses in one RTT by getting the loss information piggy-backed
by the SACK. Therefore, it performs better than other TCP
versions without Snoop. However, when combining TCP
SACK with Snoop, as shown in Figure 2 (c), Snoop retransmits
the lost packets indicated by the duplicate ACKs and
suppresses those duplicate ACKs on which the SACK
information is also piggy-backed, and thus FH cannot respond
to the SACK in a timely fashion. After the delayed SACK
arrives at FH, the sender retransmits the losses that have
already been retransmitted by Snoop earlier. Finally, when the
redundant retransmission packets arrive at BS, Snoop drops
them all. In other words, Snoop delays the multiple loss
information piggy-backed in SACK and TCP SACK causes
redundant transmissions. Therefore, TCP performs worst with
Snoop under the same network environment.

 From MH to FH: In Figure 3 (a), for the ELN information
mainly piggy-backed in duplicate ACK by Snoop, MH can
identify the wireless random losses, allowing MH to retransmit
the wireless losses without blindly starting up the congestion
control. Different from transmission in the FH to MH direction,
however, reliable transmission is provided by a wired channel,
and therefore the corresponding retransmissions are

implemented by MH. Thus the recovery of multiple losses
should experience a longer delay. In Figure 3 (b), for the same
reason as presented in the above paragraph, TCP SACK is still
the best when compared with other TCP versions without
Snoop in the MH to FH direction. However, in Figure 3 (c),
when the duplicate ACK with SACK information arrives at
MH, TCP SACK immediately retransmits all four losses, of
course including the wireless losses indicated by the ELN flag.
Therefore, Snoop does not provide any performance
improvement over TCP SACK, and of course leads to similar
simulation results shown in Figure 6.

III. IMPLEMENTATION OF SNACK
Based on the above analyses, in this section, the SNACK

mechanism is designed to provide explicit information on
multiple packet losses on wireless links. Combined with
SNACK, a new link layer retransmission protocol, named
SNACK-NS, is proposed to overcome the conflict between
TCP SACK and Snoop, and to enhance the TCP performance
over wireless links with high packet loss rates and stubborn
bursty losses.

A. SNACK Mechanism
 Like TCP SACK, SNACK also uses the TCP option.
Figure 4 compares their structures. In SNACK, explicit loss
information is conveyed by several loss blocks and each block
stores the sequence number of the most recent wireless loss
judged by the associated detecting protocol. According to the
network model and the utilization of other TCP options, such
as the timestamp option in RTTM [10], the maximum number
of loss blocks accessed by an ACK is decided (The value 6 is
used in our simulations). According to the current loss
condition, the number of loss blocks to be piggy-backed by an
ACK is also decided. Unlike TCP SACK, SNACK has the
following virtues:

• SNACK can provide more effective explicit multiple
packet loss information.

MH BS (Snoop) FH

2

3

4

5

6

7

8

9

10

11

12

13

14

3

15

3

3 D

3 D

3 D

3 D

3 D

3 D

3 D

3 D

4

4 D

ACKs with
 ELN

already
retransmitted
ignored by MH

16

4

MH(SACK) BS FH(SACK)

2

3

4

5

6

7

8

9

3 4
5 6

10

3

3 SACK

3 SACK

3 SACK

4 SACK
5 SACK
6 SACK

already
retransmitted
ignored by MH

11

12

13

14

15

16

3 SACK

3 SACK

3 SACK

3 SACK

3 SACK

16

17

MH(SACK) BS(Snoop) FH(SACK)

2

3

4

5

6

7

8

9

3 4
5 6

10

3

3 SACK

3 SACK

3 SACK

4 SACK
5 SACK
6 SACK

already
retransmitted
ignored by MH

11

retransmitted
by SACK
no ELN

12

13

14

15

16

3 SACK

3 SACK

3 SACK

3 SACK

3 SACK

16

17

Dup ADKs
with ELN

MH(SNACK) BS(SNACK-CLRP) FH

2

3

4

5

6

7

8

9
3 4
5 6

10

3

3 D

3 D

3 D

4
5
6

11

12already
retransmitted
ignore by MH

11

New ACK
with SNACK

 (a) Snoop (b) SACK (c) SACK with Snoop (d) SNACK-NS

 Figure 3. Recovery from four drops in MH to FH direction

WCNC 2004 / IEEE Communications Society 1053 0-7803-8344-3/04/$20.00 © 2004 IEEE

• SNACK utilizes parts of the TCP options in a small
number of ACKs and is conveyed only between BS
and MH, thus incurring only a small transmission cost.

• According to the type of wireless link in heterogeneous
networks, the SNACK mechanism can be embedded in
other protocols and have its parameters set flexibly.

• SNACK does not require any modifications to the
protocol stack on FH.

B. SNACK-SN
In this section, we propose two protocol components,

SNACK-Snoop and SNACK-TCP, to implement SNACK-NS.
From FH to MH, SNACK-Snoop performs the functions of
detecting wireless multiple losses and piggy-backing the
SNACK information, while SNACK-TCP performs the
function of processing the ACKs with SNACK information
and rapidly retransmitting the losses. From MH to FH,
SNACK-Snoop performs the functions performed by
SNACK-TCP in the direction from FH to MH, but SNACK-
TCP performs the function performed by SNACK-Snoop in
the direction from MH to FH. In addition, SNACK-NS
follows the local timeout mechanism used in Snoop for fast
retransmissions if needed. The following is the detailed
implementation of the two protocol components in both
directions. The network topologies are illustrated in Figure 1.

1) Transmissions from MH to FH
 For the transmissions in this direction, SNACK-NS
discards the ELN mechanism used in Snoop, and also
introduces the fast retransmission mechanism over wireless
links to enhance TCP performance.

SNACK-Snoop does not require storing the arriving
packets and retransmitting any lost packets because wired
networks provide reliable transmission. It only stores the
sequence numbers of the received packets in a list to
determine the sort of losses. For example, a hole between
consecutive packets, which persists after several packets have
arrived, will be regarded as a wireless loss. Whereas, if the
sequence number of a lost packet indicated by some duplicate

ACKs (Several duplicate ACKs whose sequence numbers are
n indicate that the packet whose sequence number is n+1 has
been lost.) is identical with one of sequence numbers stored in
the above list, it shows that the packet has been transmitted to
BS successfully but lost in the later transmission between BS
and FH, so the loss will be regarded as a wired congestion
loss. However, if the sequence number of a lost packet
indicated by duplicate ACKs is not identical with any one of
the sequence numbers in the list, the loss should be regarded
as a wireless loss. When an ACK arrives at the BS, whether a
new or a duplicate one, by using the above rules, if SNACK-
Snoop detects some wireless losses, then it will piggy-back all
their sequence numbers to the ACK as primary multiple
wireless loss information. In existing TCP versions, wireless
loss information is piggy-backed mainly by the duplicate
ACKs produced by the arrival of packets behind the lost ones,
but in SNACK-Snoop, loss information is piggy-backed by
not only duplicate ACKs but also new ACKs, so long as when
the ACKs arrive, there is detected loss information needed to
be sent out. Thus, SNACK has responds faster to wireless
multiple losses. Moreover, if SNACK-Snoop does not detect
any wireless losses, the ACK will be transmitted to MH
untouched. Therefore, apart from the recovery mechanism to
wireless losses provided by SNACK-TCP, we can still utilize
the congestion avoidance mechanism of TCP to handle wired
losses, and thus recovery from network losses can be
provided.

SNACK-TCP mainly performs the function of
retransmission control, because the packet loss rate over
wireless links is high. Minor modifications to TCP deployed
on MH are required to take care of the explicit multiple
wireless loss information piggy-backed in SNACK and to
perform fast retransmissions of multiple wireless losses.
Therefore, a structure list is used in SNACK-TCP. It consists
of many structure cells and each structure cell is composed of
the sequence number of a lost packet and the total times that
MH has received the sequence information. When an ACK
arrives in MH, according to information attached in the ACK,
the list is updated, deleting the records of the packets that have
been acknowledged. If it is a SNACK, then SNACK-TCP
adds the records for the most recent lost packets or updates the
numbers of times of notifications of lost packets. After
updating, if the recorded times of any lost packet exceeds the
retransmission threshold, the sender will retransmit the lost
packet promptly without starting up TCP congestion control.
After packet retransmission, the times record will be set to a
negative value, say –1. If MH still receives loss information,
the times record will remain negative. Generally speaking, by
properly setting the value of the retransmission threshold,
aggressive retransmissions can be avoided. In our simulation,
we set the parameter as 2. Figure 5 shows the flowchart for
ACK processing.

Figure 3 (d) analyzes the cooperation of the two protocol
components to recover from the four continuous packet losses.
When ACK 3 arrives at BS, SNACK-Snoop has detected all
four packet losses, so it piggy-backs multiple loss information
immediately on ACK 3, and then SNACK-TCP provides faster

Type

Left edge of 1st SACK block

Right edge of 1st SACK block

Left edge of nth SACK block

Right edge of nst SACK block

Length

Type Length

The 1st loss block

The (n-1)th loss block

The nth loss block

The 2nd loss block

 (a) SACK (b) SNACK

 Figure 4. The block structures

WCNC 2004 / IEEE Communications Society 1054 0-7803-8344-3/04/$20.00 © 2004 IEEE

retransmissions to all the four losses. It is obvious that the
sender can recover from the busty losses within a shorter
period.

2) Transmissions from FH to MH
 For data transmissions in this direction, SNACK-Snoop
stores all packets received by BS. On the one hand, these
packets are used to judge whether a loss is due to network
congestion or wireless loss. On the other hand, they support
fast local link layer retransmissions of the losses over wireless
links. Besides, SNACK-Snoop performs the functions of
processing ACKs with SNACK information and controlling
fast retransmissions. However, TCP-MH performs the
functions of detecting multiple packet losses and piggy-
backing the SNACK information. Therefore, the two protocol
components can also work well in the transmission from FH to
MH. The implementation details of the two protocol
components are the same as mentioned above in this section.

As shown in Figure 2 (d), when the ACKs with SNACK
information arrive at BS, after updating the retransmission list,
SNACK-Snoop immediately locally retransmits the multiple
wireless losses and suppresses duplicate ACKs that may cause
redundant transmissions. Thus, the conflict between TCP
SACK and Snoop is avoided successfully and the performance
of TCP over wireless networks is enhanced.

IV. NUMERICAL RESULTS

A. Simulation Topologies
All simulations in this paper were performed in Network

Simulator (NS-2) [13]. Figure 1 shows the topologies of
heterogeneous wired/wireless networks used. The system
consists of a 10 Mbps, 10 ms propagation delay wired channel
and a 2 Mbps wireless channel with a negligible propagation

delay of 64 µs. The maximum congestion window size of the
sender is 30 segments. The packet size is fixed at 1000 bytes.

It is well known that losses in wireless channels usually
occur in a bursty fashion. These losses can be modeled as a
two-state Markov error model consisting of a good state and a
bad state as analyzed in [14]. In our simulations, we choose
the two-state Markov error model used in [15] which have
been adopted in several papers. In order to simulate a realistic
network scenario with a bursty wireless link with different
packet loss rates, we set the periods of the good and bad states
as 6s and 0.2s respectively, fix the high packet loss rate in Bad
state at 50% and vary the packet loss rate in Good state from
0.01% to 10%, then test the variation of the throughput of
several different protocols.

B. Simulation Results
 In the following, we show our simulation results for
different transmission directions. Since the performance of
TCP Tahoe, Reno and Newreno under the same network
environment are similar, we only show TCP Reno results.

 Figure 6 shows the simulation results of the transmission in
the direction from MH to FH over a 300 second period.
Without Snoop, TCP SACK’s performance is better than Reno,
while, with Snoop, TCP SACK’s performance is worse than
Reno. In addition, the throughput of TCP SACK at each packet
loss rate (PLR) is identical with that of TCP SACK with
Snoop. These results prove the correctness of the analyses in
Section II. Compared with Reno with the aid of SNACK-NS,
however, when PLR in good state is varied from 0.01% to 1%,
the throughput of Reno with SNACK-NS is close to the two
TCP versions with Snoop, but has certain improvements over
those without Snoop. When PLR is above 1%, with SNACK-
NS, Reno has distinct improvements over the others.
Compared with Reno with the aid of Snoop, Reno with
SNACK-NS has an enhancement of 14.8% to 77.5%.
Compared with TCP SACK with Snoop, the enhancement is
around 23.2% to 152.7% and compared with Reno, the
enhancement is around 49.5% to 286.9%.

1E
-4

1E
-3

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01 -- -- -- -- --

0.
02 -- -- -- -- --

0.
04 -- -- -- -- --

0.
06 -- -- -- -- --

0.
08 -- -- -- -- --

0.
10.0

0.4

0.8

1.2

1.6

 Reno+SNACK-NS
 Reno+Snoop
 Sack+Snoop
 Sack
 Reno

Th
ro

ug
hp

ut
 (M

b/
s)

Packet Loss Rate
 Figure 6. Transmission from MH to FH

ACK arrives

Update the struct list

New ACK ?

No

Wireless
packet loss ?

Yes

Already
retransmitted?

Multiple losses
retransmission

request?

Retransmit
 all multiple
lost packets

Retransmit it by
 the TCP sender

Retransmit
the next

lost packet

Retransmit the
wireless loss

No

Yes

No

Yes

YesYes

Multiple losses
retransmission

request?

 Figure 5. Flowchart for ACK processing

WCNC 2004 / IEEE Communications Society 1055 0-7803-8344-3/04/$20.00 © 2004 IEEE

 Figure 7 shows the simulation results of the transmission in
the direction from FH to MH, also in a 300 second period.
Comparing the performance of the two TCP versions with and
without Snoop, the results are similar to the above discussion.
In the same way, the performance of Reno with SNACK-NS is
superior to all of them. Deserving special attention is the fact
that the performance of Reno with SNACK-NS has a steady
improvement over Snoop for the range of loss probabilities
under study. Even when the PLR is 0.01%, it has an
improvement of 6.3% over Reno and TCP SACK with Snoop.
With PLR at 10%, the enhancement is 16.0% over Reno with
Snoop, 19.1% over TCP SACK with Snoop, 837.6% over TCP
SACK and 1334.2% over Reno.

V. CONCLUTION

The enhancement of TCP over bursty wireless networks is
an important research topic in the wireless Internet. This paper
has proposed a novel protocol called SNACK-New Snoop to
solve this problem. The key idea of the protocol is to introduce
the capability to detect bursy losses at the base station (BS) and
end mobile host (MH) in a wireless link, and to provide
feedback to the source in a speedy manner to effect immediate
retransmissions for packet lost in the wireless link. The
SNACK mechanism can provide explicit wireless loss
information between BS and MH with a small transmission
cost. Through changing the functions deployed by the two
protocol components, namely SNACK-Snoop and SNACK-

TCP, both the MH to FH and FH to MH transmission
performance can be greatly enhanced. Our analyses and
simulation results show that SNACK-New Snoop can
effectively enhance TCP performance over wireless links,
particularly in those wireless networks with high packet loss
rates and serious bursty losses. In the future, we will attempt to
distinguish the wireless losses in details and study different
response to them. In addition, we will consider different types
of wireless links (e.g., WLAN, cellular networks, etc.) and test
the performance of SNACK-New Snoop in such links.

REFERENCES

[1] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. H. Katz, “A
Comparison of Mechanisms for Improving TCP Performance over
Wireless Links,” IEEE/ACM Transactions on Networking, December
1997.

[2] C. P. Fu and S. C. Liew, “TCP Veno: TCP Enhancement for
Transmission over Wireless Access Networks,” IEEE J. on Selected
Areas in Commu., vol. 21, no. 2, pp. 216-228, Feb. 2003.

[3] K. Brown and S. Singh, “M-TCP: TCP for Mobile Cellular Networks,”
Computer Communication Review, vol. 27,no.5, Oct. 1997.

[4] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving Reliable
Transport and Handoff Performance over Cellular Wireless Networks,”
ACM Wireless Networks ,vol. 1, No. 4, December 1995.

[5] H. Balakrishnan, “Challenges to Reliable Data Transport over
Heterogeneous Wireless Networks,” Ph.D. thesis, UC Berkeley, May
1998.

[6] H. Balakrishnan and R. H. Katz, “Explicit Loss Notification and
Wireless Web Performance,” IEEE CLOBLECOM, Sydney, Australia,
November 1998.

[7] G. Xylomenos and G. C. Polyzos, “Quality of Service Issues in Multi-
service Wireless Internet Links,” the International Workshop on QoS in
Multi-service IP Networks (QoS-IP) , pp. 347–365. 2001.

[8] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment and Option,” RFC 2801, IETF, October 1996.

[9] S. Floyd, “Issues of TCP with SACK,” Technical report, Mar. 1996.
[10] W. Ding and A. Jamalipour, “A New Explicit Loss Notification with

Acknowledgment for Wireless TCP,” PIMRC2001, San Diego, CA,
September 30-October 3, 2001.

[11] S. Vangala and M. A. Labrador, “Performance of TCP over wireless
Networks with the Snoop Protocol,” LCN 2002. 27th Annual IEEE
Conference, 6-8 Nov. pp. 600-601. 2002.

[12] S. Vangala and M. Labrador, “The TCP SACK-Aware-Snoop Protocol
for TCP over Wireless Networks,” IEEE VTC, Orlando, October 2003.

[13] ns-2, http://www.isi.edu/nsnam/ns/.
[14] A. A. Abouzeid, S. Roy and M. Azizoglu, “Stochastic Modeling of TCP

over Lossy Link,” IEEE INFORCOM 2000, Tel Aviv, Israel, March
2000

[15] M. Gerla, M. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Masco,
“TCP Westwood: Window Control Using Bandwidth Estimation,” IEEE
GLOBECOM, San Antonio, Texas, USA, November 25-29, 2001.

1E
-4

1E
-3

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01 -- -- -- -- --

0.
02 -- -- -- -- --

0.
04 -- -- -- -- --

0.
06 -- -- -- -- --

0.
08 -- -- -- -- --

0.
10.0

0.4

0.8

1.2

1.6

2.0

Packet Loss Rate

Th
ro

ug
hp

ut
 (M

b/
s)

 Reno+SNACK-NS
 Reno+Snoop
 Sack+Snoop
 Sack
 Reno

 Figure 7. Transmission from FH to MH

WCNC 2004 / IEEE Communications Society 1056 0-7803-8344-3/04/$20.00 © 2004 IEEE

	footer1:

