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Abstract—TCP is the most widely adopted transport layer 
communication protocol. In heterogeneous wired/wireless 
networks, however, the high packet loss rate over wireless links 
can trigger unnecessary execution of TCP congestion control 
algorithms, resulting in performance degradation.  TCP 
performs poorly on wireless links with bursty losses, when it is 
forced to rely on limited information available from batched 
acknowledgements, (i.e., multiple packets are acknowledged with 
one acknowledgment packet). In this paper, a Selective Negative 
Acknowledgement (SNACK) mechanism is designed to overcome 
the limitation of batched acknowledgments. A new link layer 
retransmission protocol, called, SNACK-NS (New Snoop), is 
proposed. Through the detection and retransmission functions 
that are provided by the two protocol components of SNACK-
NS, namely, SNACK-Snoop and SNACK-TCP, the transmission 
performance of TCP over wireless network is greatly enhanced in 
both fixed host (FH) to mobile host (MH) and MH to FH 
transmissions. 

I. INTRODUCTION  
During the past few years, the increase in the number of 

competing technologies and service network models available 
to the public has accelerated the growth of the wireless 
Internet. The congestion control algorithms embedded in TCP 
work well in wired networks in preventing congestion collapse. 
One problem of TCP congestion control in heterogeneous 
wired/wireless networks is that TCP regards both wired and 
wireless packet losses as indications of network congestion. 
Even when packet losses are due to noise in the wireless 
medium rather than congestion, TCP and its extended versions, 
such as TCP Reno, TCP Newreno, TCP SACK, will begin 
executing their congestion control algorithms, by blindly 
reducing the congestion window size. How to allow TCP to 
distinguish between the losses due to congestion and those due 
to packet corruption in a timely fashion is a major research 
issue for wireless TCP.   Several approaches [1] to address this 
problem have been proposed. These approaches can be divided 
into end-to-end mechanisms like Veno [2], split connections 
mechanisms like M-TCP [3] and localized link layer 
mechanisms like Snoop [4,5]. Performance comparisons of 
some of these mechanisms were given in [1], in which the 
localized link layer solution was demonstrated to be superior in 
terms of throughput performance when the packet loss rate is 

high [1]. In addition, these mechanisms can be implemented 
easily and have fast response to wireless random losses.  

In this paper, we consider the transmission between a fixed 
host (FH) and a mobile host (MH) relayed through a base 
station (BS), as shown in Figure 1. The main advantage of 
employing a link-layer protocol for loss recovery is that it fits 
naturally into the layered structure of network protocols. At the 
same time, it has more control over the physical layer 
protocols. The protocol that runs on top of the physical layer 
has immediate knowledge of dropped frames, and thus can 
respond faster than higher layer protocols. The Snoop protocol 
(Snoop) installed at the link layer of a BS monitors the packets 
and ACKs in both MH to FH and FH to MH directions.  

For transmission from FH to MH, Snoop caches the packets 
arriving at BS. When packets are lost in the link from BS to 
MH, BS arranges local retransmissions based on the type of 
ACKs from MH and local timers. For packets from MH to FH, 
Snoop at BS adds explicit loss notification (ELN)  [6] in the 
ACKs to the MH, setting the value of one bit in the six 
reserved bits included in a TCP header, thus allowing MH to 
distinguish congestion losses from wireless random losses. 
However, Snoop can only provide single packet loss 
information within one local RTT (round-trip-times). Under 
high loss rate wireless network environment, Snoop does not 
work well because it mimics the TCP error recovery 
mechanism, which is not very robust under harsh error 
conditions. In bursty traffic networks, the lack of explicit and 
accurate information in Snoop degrades the bandwidth 
utilization sharply. Furthermore, Snoop offers great 
improvement in the model of wired-cum-wireless networks. 
But when used in wireless-cum-wired or wireless-cum-wireless 
networks, Snoop is regarded as ineffective [7]. 

     When multiple packets are lost in a TCP window and 
within one RTT, with the limited information available from 
cumulative acknowledgments (ACKs) by TCP, the congestion 
window size will be reduced continuously, degrading the 
throughput nearly to zero. To overcome this limitation, a 
selective acknowledgment (SACK) mechanism was proposed 
in RFC 2801 [8]. In TCP SACK, several SACK blocks are 
used to inform the sender about all the segments that have 
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been received successfully, which allows the sender to 
retransmit only the lost segments. Each SACK block consists 
of the beginning and the ending sequence number of a 
consecutive packet block received by the sender, and thus the 
holes between the SACK blocks are regarded as lost packets. 
TCP SACK and Snoop have been combined in many papers to 
enhance the TCP performance over wireless links with burtsy 
losses. However, apart from other limitations of SACK itself, 
such as redundant transmissions caused by using TCP options, 
aggressive retransmissions in the presence of congestion and 
unnecessary retransmissions when a number of successive 
ACK packets are dropped in the network during a fast 
recovery period [9], the mechanisms of TCP SACK and 
Snoop may interfere with each other in both directions when 
combating bursty wireless losses. The detailed analyses will 
be presented in Section II.  So, it is impractical to solve the 
problem of bursty losses over wireless networks by using the 
combination of TCP SACK and Snoop. Recently, much 
research has been focused on designing a new ACK [10] for 
wireless TCP. Unfortunately, it encounters the same problems 
as TCP SACK. 

In this paper, SNACK mechanism running on BS and MH 
(note: as opposed to SACK running on FH and MH) is 
designed to provide explicit information on multiple packet 
losses over wireless links. Then, based on the SNACK 
mechanism, two protocol components are proposed to 
overcome the above problems. They are the new Snoop 
protocol deployed on BS (SNACK-Snoop) and TCP deployed 
on MH (SNACK-TCP). When handling the wireless losses, by 
performing the detection and retransmission functions, faster 
recovery and more effective congestion avoidance over 
wireless links can be provided.  In addition, in the two data 
transmission directions, SNACK-Snoop and SNACK-TCP 
operate similarly, differing only in the way the detection and 
retransmission functions are divided.  Compared with other 
protocols, the analyses in Section II and the simulation results 
in Section IV show that the two protocol components can 
improve the network throughput and enhance the TCP 

performance over wireless networks greatly.  

II. RELATED WORK 
     With random noise, multi-path fading and mutual user 
interference in wireless channels, bursty losses may become a 
tough problem for wireless TCP. The simulation-based 
performance of several TCP versions over wireless networks 
with and without Snoop has been analyzed on heterogeneous 
networks in the transmission direction from FH to MH [11,12]. 
It has been found that TCP SACK is the best performing 
version without Snoop, but it is the worst version with the aid 
of Snoop. This result is identical with our simulation result 
under a comparable network environment. Furthermore, we 
find that except for TCP Vegas, the enhancement of TCP 
Tahoe, Reno, Newreno and TCP SACK is limited when 
implemented on networks primarily with bursty losses. In 
addition, we also study the performance of the TCP versions 
with and without Snoop in the direction from MH to FH. It is 
puzzling that TCP SACK does not achieve additional 
improvements with the help of Snoop, as shown in Figure 6. 
Certainly, there are some problems with Snoop or the 
interactions between Snoop and TCP SACK in heterogeneous 
networks with bursty losses. So in the remainder of this section 
we describe our analyses of a scenario with four packets 
dropped from a window of data in both directions.      
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                                                                                     Figure 2.  Recovery from four drops in FH to MH direction 
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      From FH to MH: Figure 2 (a) shows the Snoop recovery 
steps after the drops of Packets 3 to 6. Snoop maintains a cache 
of unacknowledged data segments destined to MH. When 
Snoop receives a duplicate acknowledgement from MH 
destined for FH, it retransmits the missing segments and 
suppresses the duplicate acknowledgment instead of 
forwarding it to FH. Snoop also uses timeouts to locally 
retransmit segments, if needed. These timeouts are less coarse 
then the de facto TCP timeouts, and therefore expire sooner, 
leading to a local retransmission within the time span of a TCP 
timeout. It can be seen that Snoop also uses duplicate ACKs 
and timeouts to retransmit the wireless losses, which mimics 
the recovery mechanism of TCP. Therefore when handling 
bursty losses, it is also inefficient. This also explains why TCP 
Tahoe, Reno, Newreno and TCP SACK only have limited 
improvements over links with bursty losses. Different from 
Snoop, in Figure 2 (b), TCP SACK can retransmit the four 
losses in one RTT by getting the loss information piggy-backed 
by the SACK. Therefore, it performs better than other TCP 
versions without Snoop. However, when combining TCP 
SACK with Snoop, as shown in Figure 2 (c), Snoop retransmits 
the lost packets indicated by the duplicate ACKs and 
suppresses those duplicate ACKs on which the SACK 
information is also piggy-backed, and thus FH cannot respond 
to the SACK in a timely fashion. After the delayed SACK 
arrives at FH, the sender retransmits the losses that have 
already been retransmitted by Snoop earlier. Finally, when the 
redundant retransmission packets arrive at BS, Snoop drops 
them all. In other words, Snoop delays the multiple loss 
information piggy-backed in SACK and TCP SACK causes 
redundant transmissions. Therefore, TCP performs worst with 
Snoop under the same network environment. 

     From MH to FH: In Figure 3 (a), for the ELN information 
mainly piggy-backed in duplicate ACK by Snoop, MH can 
identify the wireless random losses, allowing MH to retransmit 
the wireless losses without blindly starting up the congestion 
control. Different from transmission in the FH to MH direction, 
however, reliable transmission is provided by a wired channel, 
and therefore the corresponding retransmissions are 

implemented by MH. Thus the recovery of multiple losses 
should experience a longer delay. In Figure 3 (b), for the same 
reason as presented in the above paragraph, TCP SACK is still 
the best when compared with other TCP versions without 
Snoop in the MH to FH direction. However, in Figure 3 (c), 
when the duplicate ACK with SACK information arrives at 
MH, TCP SACK immediately retransmits all four losses, of 
course including the wireless losses indicated by the ELN flag. 
Therefore, Snoop does not provide any performance 
improvement over TCP SACK, and of course leads to similar 
simulation results shown in Figure 6.  

III. IMPLEMENTATION OF SNACK 
Based on the above analyses, in this section, the SNACK 

mechanism is designed to provide explicit information on 
multiple packet losses on wireless links. Combined with 
SNACK, a new link layer retransmission protocol, named 
SNACK-NS, is proposed to overcome the conflict between 
TCP SACK and Snoop, and to enhance the TCP performance 
over wireless links with high packet loss rates and stubborn 
bursty losses.  

A. SNACK  Mechanism 
      Like TCP SACK, SNACK also uses the TCP option. 
Figure 4 compares their structures. In SNACK, explicit loss 
information is conveyed by several loss blocks and each block 
stores the sequence number of the most recent wireless loss 
judged by the associated detecting protocol. According to the 
network model and the utilization of other TCP options, such 
as the timestamp option in RTTM [10], the maximum number 
of loss blocks accessed by an ACK is decided (The value 6 is 
used in our simulations). According to the current loss 
condition, the number of loss blocks to be piggy-backed by an 
ACK is also decided. Unlike TCP SACK, SNACK has the 
following virtues: 

• SNACK can provide more effective explicit multiple 
packet loss information. 
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                                                                                       Figure 3.  Recovery from four drops in MH to FH direction 
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• SNACK utilizes parts of the TCP options in a small 
number of ACKs and is conveyed only between BS 
and MH, thus incurring only a small transmission cost. 

• According to the type of wireless link in heterogeneous 
networks, the SNACK mechanism can be embedded in 
other protocols and have its parameters set flexibly. 

• SNACK does not require any modifications to the 
protocol stack on FH. 

B. SNACK-SN 
In this section, we propose two protocol components, 

SNACK-Snoop and SNACK-TCP, to implement SNACK-NS. 
From FH to MH, SNACK-Snoop performs the functions of 
detecting wireless multiple losses and piggy-backing the 
SNACK information, while SNACK-TCP performs the 
function of processing the ACKs with SNACK information 
and rapidly retransmitting the losses. From MH to FH, 
SNACK-Snoop performs the functions performed by 
SNACK-TCP in the direction from FH to MH, but SNACK-
TCP performs the function performed by SNACK-Snoop in 
the direction from MH to FH. In addition, SNACK-NS 
follows the local timeout mechanism used in Snoop for fast 
retransmissions if needed. The following is the detailed 
implementation of the two protocol components in both 
directions. The network topologies are illustrated in Figure 1. 

1) Transmissions from MH to FH 
      For the transmissions in this direction, SNACK-NS 
discards the ELN mechanism used in Snoop, and also 
introduces the fast retransmission mechanism over wireless 
links to enhance TCP performance.    

SNACK-Snoop does not require storing the arriving 
packets and retransmitting any lost packets because wired 
networks provide reliable transmission. It only stores the 
sequence numbers of the received packets in a list to 
determine the sort of losses. For example, a hole between 
consecutive packets, which persists after several packets have 
arrived, will be regarded as a wireless loss. Whereas, if the 
sequence number of a lost packet indicated by some duplicate 

ACKs (Several duplicate ACKs whose sequence numbers are 
n indicate that the packet whose sequence number is n+1 has 
been lost.) is identical with one of sequence numbers stored in 
the above list, it shows that the packet has been transmitted to 
BS successfully but lost in the later transmission between BS 
and FH, so the loss will be regarded as a wired congestion 
loss. However, if the sequence number of a lost packet 
indicated by duplicate ACKs is not identical with any one of 
the sequence numbers in the list, the loss should be regarded 
as a wireless loss. When an ACK arrives at the BS, whether a 
new or a duplicate one, by using the above rules, if SNACK-
Snoop detects some wireless losses, then it will piggy-back all 
their sequence numbers to the ACK as primary multiple 
wireless loss information. In existing TCP versions, wireless 
loss information is piggy-backed mainly by the duplicate 
ACKs produced by the arrival of packets behind the lost ones, 
but in SNACK-Snoop, loss information is piggy-backed by 
not only duplicate ACKs but also new ACKs, so long as when 
the ACKs arrive, there is detected loss information needed to 
be sent out. Thus, SNACK has responds faster to wireless 
multiple losses. Moreover, if SNACK-Snoop does not detect 
any wireless losses, the ACK will be transmitted to MH 
untouched. Therefore, apart from the recovery mechanism to 
wireless losses provided by SNACK-TCP, we can still utilize 
the congestion avoidance mechanism of TCP to handle wired 
losses, and thus recovery from network losses can be 
provided.  

SNACK-TCP mainly performs the function of 
retransmission control, because the packet loss rate over 
wireless links is high. Minor modifications to TCP deployed 
on MH are required to take care of the explicit multiple 
wireless loss information piggy-backed in SNACK and to 
perform fast retransmissions of multiple wireless losses. 
Therefore, a structure list is used in SNACK-TCP. It consists 
of many structure cells and each structure cell is composed of 
the sequence number of a lost packet and the total times that 
MH has received the sequence information. When an ACK 
arrives in MH, according to information attached in the ACK, 
the list is updated, deleting the records of the packets that have 
been acknowledged. If it is a SNACK, then SNACK-TCP 
adds the records for the most recent lost packets or updates the 
numbers of times of notifications of lost packets. After 
updating, if the recorded times of any lost packet exceeds the 
retransmission threshold, the sender will retransmit the lost 
packet promptly without starting up TCP congestion control. 
After packet retransmission, the times record will be set to a 
negative value, say –1. If MH still receives loss information, 
the times record will remain negative. Generally speaking, by 
properly setting the value of the retransmission threshold, 
aggressive retransmissions can be avoided. In our simulation, 
we set the parameter as 2. Figure 5 shows the flowchart for 
ACK processing. 

Figure 3 (d) analyzes the cooperation of the two protocol 
components to recover from the four continuous packet losses. 
When ACK 3 arrives at BS, SNACK-Snoop has detected all 
four packet losses, so it piggy-backs multiple loss information 
immediately on ACK 3, and then SNACK-TCP provides faster 
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retransmissions to all the four losses. It is obvious that the 
sender can recover from the busty losses within a shorter 
period.  

2) Transmissions from FH  to MH 
      For data transmissions in this direction, SNACK-Snoop 
stores all packets received by BS. On the one hand, these 
packets are used to judge whether a loss is due to network 
congestion or wireless loss. On the other hand, they support 
fast local link layer retransmissions of the losses over wireless 
links. Besides, SNACK-Snoop performs the functions of 
processing ACKs with SNACK information and controlling 
fast retransmissions. However, TCP-MH performs the 
functions of detecting multiple packet losses and piggy-
backing the SNACK information. Therefore, the two protocol 
components can also work well in the transmission from FH to 
MH. The implementation details of the two protocol 
components are the same as mentioned above in this section.  

As shown in Figure 2 (d), when the ACKs with SNACK 
information arrive at BS, after updating the retransmission list, 
SNACK-Snoop immediately locally retransmits the multiple 
wireless losses and suppresses duplicate ACKs that may cause 
redundant transmissions. Thus, the conflict between TCP 
SACK and Snoop is avoided successfully and the performance 
of TCP over wireless networks is enhanced.  

IV. NUMERICAL RESULTS 

A. Simulation Topologies 
All simulations in this paper were performed in Network 

Simulator (NS-2) [13]. Figure 1 shows the topologies of 
heterogeneous wired/wireless networks used. The system 
consists of a 10 Mbps, 10 ms propagation delay wired channel 
and a 2 Mbps wireless channel with a negligible propagation 

delay of 64 µs. The maximum congestion window size of the 
sender is 30 segments. The packet size is fixed at 1000 bytes. 

It is well known that losses in wireless channels usually 
occur in a bursty fashion. These losses can be modeled as a 
two-state Markov error model consisting of a good state and a 
bad state as analyzed in [14]. In our simulations, we choose 
the two-state Markov error model used in  [15] which have 
been adopted in several papers. In order to simulate a realistic 
network scenario with a bursty wireless link with different 
packet loss rates, we set the periods of the good and bad states 
as 6s and 0.2s respectively, fix the high packet loss rate in Bad 
state at 50% and vary the packet loss rate in Good state from 
0.01% to 10%, then test the variation of the throughput of 
several different protocols. 

B. Simulation Results 
     In the following, we show our simulation results for 
different transmission directions. Since the performance of 
TCP Tahoe, Reno and Newreno under the same network 
environment are similar, we only show TCP Reno results.  

     Figure 6 shows the simulation results of the transmission in 
the direction from MH to FH over a 300 second period. 
Without Snoop, TCP SACK’s performance is better than Reno, 
while, with Snoop, TCP SACK’s performance is worse than 
Reno. In addition, the throughput of TCP SACK at each packet 
loss rate (PLR) is identical with that of TCP SACK with 
Snoop. These results prove the correctness of the analyses in 
Section II. Compared with Reno with the aid of SNACK-NS, 
however, when PLR in good state is varied from 0.01% to 1%, 
the throughput of Reno with SNACK-NS is close to the two 
TCP versions with Snoop, but has certain improvements over 
those without Snoop. When PLR is above 1%, with SNACK-
NS, Reno has distinct improvements over the others. 
Compared with Reno with the aid of Snoop, Reno with 
SNACK-NS has an enhancement of 14.8% to 77.5%. 
Compared with TCP SACK with Snoop, the enhancement is 
around 23.2% to 152.7% and compared with Reno, the 
enhancement is around 49.5% to 286.9%. 
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      Figure 7 shows the simulation results of the transmission in 
the direction from FH to MH, also in a 300 second period. 
Comparing the performance of the two TCP versions with and 
without Snoop, the results are similar to the above discussion. 
In the same way, the performance of Reno with SNACK-NS is 
superior to all of them. Deserving special attention is the fact 
that the performance of Reno with SNACK-NS has a steady 
improvement over Snoop for the range of loss probabilities 
under study. Even when the PLR is 0.01%, it has an 
improvement of 6.3% over Reno and TCP SACK with Snoop. 
With PLR at 10%, the enhancement is 16.0% over Reno with 
Snoop, 19.1% over TCP SACK with Snoop, 837.6% over TCP 
SACK and 1334.2% over Reno. 

V. CONCLUTION 
 

The enhancement of TCP over bursty wireless networks is 
an important research topic in the wireless Internet. This paper 
has proposed a novel protocol called SNACK-New Snoop to 
solve this problem. The key idea of the protocol is to introduce 
the capability to detect bursy losses at the base station (BS) and 
end mobile host (MH) in a wireless link, and to provide 
feedback to the source in a speedy manner to effect immediate 
retransmissions for packet lost in the wireless link. The 
SNACK mechanism can provide explicit wireless loss 
information between BS and MH with a small transmission 
cost. Through changing the functions deployed by the two 
protocol components, namely SNACK-Snoop and SNACK-

TCP, both the MH to FH and FH to MH transmission 
performance can be greatly enhanced. Our analyses and 
simulation results show that SNACK-New Snoop can 
effectively enhance TCP performance over wireless links, 
particularly in those wireless networks with high packet loss 
rates and serious bursty losses. In the future, we will attempt to 
distinguish the wireless losses in details and study different 
response to them.  In addition, we will consider different types 
of wireless links (e.g., WLAN, cellular networks, etc.) and test 
the performance of SNACK-New Snoop in such links. 
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