2,857 research outputs found

    Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications

    Get PDF
    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator

    Origins of ferromagnetism in transition-metal doped Si

    Get PDF
    We present results of the magnetic, structural and chemical characterizations of Mn<sup>+</sup>-implanted Si displaying <i>n</i>-type semiconducting behavior and ferromagnetic ordering with Curie temperature,T<sub>C</sub> well above room temperature. The temperature-dependent magnetization measured by superconducting quantum device interference (SQUID) from 5 K to 800 K was characterized by three different critical temperatures (T*<sub>C</sub>~45 K, T<sub>C1</sub>~630-650 K and T<sub>C2</sub>~805-825 K). Their origins were investigated using dynamic secondary mass ion spectroscopy (SIMS) and transmission electron microscopy (TEM) techniques, including electron energy loss spectroscopy (EELS), Z-contrast STEM (scanning TEM) imaging and electron diffraction. We provided direct evidences of the presence of a small amount of Fe and Cr impurities which were unintentionally doped into the samples together with the Mn<sup>+</sup> ions, as well as the formation of Mn-rich precipitates embedded in a Mn-poor matrix. The observed T*<sub>C</sub> is attributed to the Mn<sub>4</sub>Si<sub>7</sub> precipitates identified by electron diffraction. Possible origins of and are also discussed. Our findings raise questions regarding the origin of the high ferromagnetism reported in many material systems without a careful chemical analysis

    Performance Cycle Analysis of a Two-Spool, Separate-Exhaust Turbofan With Interstage Turbine Burner

    Get PDF
    This paper presents the performance cycle analysis of a dual-spool, separate-exhaust turbofan engine, with an Interstage Turbine Burner serving as a secondary combustor. The ITB, which is located at the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet engine propulsion. A detailed performance analysis of this engine has been conducted for steady-state engine performance prediction. A code is written and is capable of predicting engine performances (i.e., thrust and thrust specific fuel consumption) at varying flight conditions and throttle settings. Two design-point engines were studied to reveal trends in performance at both full and partial throttle operations. A mission analysis is also presented to assure the advantage of saving fuel by adding ITB

    Simulation of impulsive loading on column using inflatable airbag technique

    Get PDF
    The purpose of this study was to simulate impulsive loading on columns by an innovative lab-based experimental technique that utilises inflatable airbags. Mild and stainless steel hollow sectioin columns with effective lengths of 955mm and under simply supported condition were used in this study

    A Parametric Cycle Analysis of a Separate-Flow Turbofan with Interstage Turbine Burner

    Get PDF
    Today's modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. This study focuses on a parametric cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The JTB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, linear relation between high- and low-pressure turbines, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB

    Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    Get PDF
    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design-point engine will be exported to an engine reference data file that is required in off-design calculation

    Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    Get PDF
    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings

    Metal-polymer functionally graded materials for removing guided wave reflections at beam end boundaries

    Get PDF
    This paper investigates the potential of a metal-polymer functionally graded material (FGM) to remove beam end boundary wave reflections that produce complicated interference patterns in the response signals used for guided wave damage identification methodologies. The metal-polymer FGM matches the material properties to a metal beam for total wave transmission on one side and is continuously graded to a viscoelastic polymer on the other side. An Aluminium-Polycarbonate (Al-PC) FGM was fabricated and characterised using microscopy, hardness testing and through-transmission ultrasonics to verify the continuous gradient. Measurements of guided waves on an aluminium beam attached to the FGM on one end show reduction in boundary wave reflections that varies with wave frequency. A damaged aluminium beam attached with the FGM produced promising improvements in a damage identification system

    Prediction of ammonia concentration in water based on microwave spectroscopy

    Get PDF
    Ammonia is a common pollutant in water as the result of runoff in agricultural areas where it is applied as fertilizer. It must be monitored regulary for safety purpose. The current testing technique does not allow on-site measurement as the equipment are bulky, the measurement process is time-consuming and tedious with additional mixing reagents. In this study, the presence of ammonia in distilled water is estimated from open-ended coaxial probe in the range of 200 MHz to 14000 MHz. Experimental results were obtained from two set of samples with seven different ammonia concentration each. The measurements are repeated thrice hence producing forty-two data sets with 550 points. Both curve fitting and multiple regression analysis were considered to perform valid ammonia concentration projection. Validation based on 5-fold and 10-fold cross validation suggested the feasibility of the technique as it presents root mean square error (RMSE) which is less than 0.02 in the ammonia prediction. Detection method based on open-ended probe would be convenient, simple and accurate method for in-situ determination of ammonia concentration

    Genome analysis of a new Rhodothermaceae strain isolated from a hot spring

    Get PDF
    A bacterial strain, designated RA, was isolated from water sample of a hot spring on Langkawi Island of Malaysia using marine agar. Strain RA is an aerophilic and thermophilic microorganism that grows optimally at 50-60°C and is capable of growing in marine broth containing 1-10% (w/v) NaCl. 16S rRNA gene sequence analysis demonstrated that this strain is most closely related (<90% sequence identity) to Rhodothermaceae, which currently comprises of six genera: Rhodothermus (two species), Salinibacter (three species), Salisaeta (one species), Rubricoccus (one species), Rubrivirga (one species), and Longimonas (one species). Notably, analysis of average nucleotide identity (ANI) values indicated that strain RA may represent the first member of a novel genus of Rhodothermaceae. The draft genome of strain RA is 4,616,094 bp with 3630 protein-coding gene sequences. Its GC content is 68.3%, which is higher than that of most other genomes of Rhodothermaceae. Strain RA has genes for sulfate permease and arylsulfatase to withstand the high sulfur and sulfate contents of the hot spring. Putative genes encoding proteins involved in adaptation to osmotic stress were identified which encode proteins namely Na+/H+ antiporters, a sodium/solute symporter, a sodium/glutamate symporter, trehalose synthase, malto-oligosyltrehalose synthase, choline-sulfatase, potassium uptake proteins (TrkA and TrkH), osmotically inducible protein C, and the K+ channel histidine kinase KdpD. Furthermore, genome description of strain RA and comparative genome studies in relation to other related genera provide an overview of the uniqueness of this bacterium
    corecore