1,253 research outputs found

    The extreme ultraviolet excess emission in five clusters of galaxies revisited

    Get PDF
    Evidence for excess extreme ultraviolet (EUV) emission over a tail of X-ray gas bremsstrahlung emission has been building up recently, but in some cases remains controversial, mostly due to the moderate quality of the EUV data. In order to improve the signal to noise ratio in the EUV, we have performed the wavelet analysis and image reconstructions for five clusters of galaxies observed both at EUV and X-ray energies with the EUVE and ROSAT satellites respectively. The profiles of the EUV and X-ray reconstructed images all differ at a very large confidence level and an EUV excess over a thermal bremsstrahlung tail is detected in all five clusters (Abell 1795, Abell 2199, Abell 4059, Coma and Virgo) up to large radii. These results, coupled with recent XMM-Newton observations, suggest that the EUV excess is probably non thermal in origin.Comment: accepted for publication in Astronomy & Astrophysics, final versio

    XMM-Newton discovery of O VII emission from warm gas in clusters of galaxies

    Full text link
    XMM-Newton recently discovered O VII line emission from ~2 million K gas near the outer parts of several clusters of galaxies. This emission is attributed to the Warm-Hot Intergalactic Medium. The original sample of clusters studied for this purpose has been extended and two more clusters with a soft X-ray excess have been found. We discuss the physical properties of the warm gas, in particular the density, spatial extent, abundances and temperature.Comment: 8 pages, 3 figures, conference "Soft X-ray emission from clusters of galaxies and related phenomena", ed. R. Lieu, Kluwer, in pres

    On the absence of gravitational lensing of the cosmic microwave background

    Full text link
    The magnification of distant sources by mass clumps at lower (z≀1z \leq 1) redshifts is calculated analytically. The clumps are initially assumed to be galaxy group isothermal spheres with properties inferred from an extensive survey. The average effect, which includes strong lensing, is exactly counteracted by the beam divergence in between clumps (more precisely, the average reciprocal magnification cancels the inverse Dyer-Roeder demagnification). This conclusion is in fact independent of the matter density function within each clump, and remains valid for arbitrary densities of matter and dark energy. When tested against the CMB, a rather large lensing induced {\it dispersion} in the angular size of the primary acoustic peaks of the TT power spectrum is inconsistent with WMAP observations. The situation is unchanged by the use of NFW profiles for the density distribution of groups. Finally, our formulae are applied to an ensemble of NFW mass clumps or isothermal spheres having the parameters of galaxy {\it clusters}. The acoustic peak size dispersion remains unobservably large, and is also excluded by WMAP. For galaxy groups, two possible ways of reconciling with the data are proposed, both exploiting maximally the uncertainties in our knowledge of group properties. The same escape routes are not available in the case of clusters, however, because their properties are well understood. Here we have a more robust conclusion: neither of the widely accepted models are good description of clusters, or important elements of physics responsible for shaping zero curvature space are missing from the standard cosmological model. When all the effects are accrued, it is difficult to understand how WMAP could reveal no evidence whatsoever of lensing by groups and clusters.Comment: ApJ v628, pp. 583-593 (August 1, 2005

    A massive warm baryonic halo in the Coma cluster

    Get PDF
    Several deep PSPC observations of the Coma cluster reveal a very large-scale halo of soft X-ray emission, substantially in excess of the well known radiation from the hot intra-cluster medium. The excess emission, previously reported in the central region of the cluster using lower-sensitivity EUVE and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled non-thermally, but is consistent with the original scenario of thermal emission from warm gas at ~ 10^6 K. The mass of the warm gas is on par with that of the hot X-ray emitting plasma, and significantly more massive if the warm gas resides in low-density filamentary structures. Thus the data lend vital support to current theories of cosmic evolution, which predict that at low redshift \~30-40 % of the baryons reside in warm filaments converging at clusters of galaxies.Comment: Astrophysical Journal, in pres

    On the DM interpretation of the origin of non-thermal phenomena in galaxy clusters

    Full text link
    (Abridged) We study the predictions of various annihilating Dark Matter (DM) models in order to interpret the origin of non-thermal phenomena in galaxy clusters. We consider three neutralino DM models with light (9 GeV), intermediate (60 GeV) and high (500 GeV) mass. The secondary particles created by neutralino annihilation produce a multi-frequency Spectral Energy Distribution (SED), as well as heating of the intracluster gas, that are tested against the observations available for the Coma cluster. The DM produced SEDs are normalized to the Coma radio halo spectrum. We find that it is not possible to interpret all non-thermal phenomena observed in Coma in terms of DM annihilation. The DM model with 9 GeV mass produces too small power at all frequencies, while the DM model with 500 GeV produces a large excess power at all frequencies. The DM model with 60 GeV and τ±\tau^{\pm} composition is consistent with the HXR and gamma-ray data but fails to reproduce the EUV and soft X-ray data. The DM model with 60 GeV and bbˉb{\bar b} composition is always below the observed fluxes. The radio halo spectrum of Coma is well fitted only in the bbˉb{\bar b} or light and intermediate mass DM models. The heating produced by DM annihilation in the center of Coma is always larger than the intracluster gas cooling rate for an NFW DM density profile and it is substantially smaller than the cooling rate only for a cored DM density profile in DM model with 9 GeV. We conclude that the possibility of interpreting the origin of non-thermal phenomena in galaxy clusters with DM annihilation models requires a low neutralino mass and a cored DM density profile. If we then consider the multimessenger constraints to the neutralino annihilation cross-section, it turns out that such scenario would also be excluded unless we introduce a substantial boost factor due to the presence of DM substructures.Comment: 9 pages, 6 figures, 2 Tables. Submitted to A&

    On the absence of shear from perfect Einstein rings and the stability of geometry

    Full text link
    Concordance cosmology points to a Universe of zero mean curvature, due to the inflation mechanism which occurred soon after the Big Bang, while along a relatively small number of lower redshift light paths where lensing events are observed, space is positively curved. How do we know that global geometry and topology are robust rather than in a state of chaos? The phenomenon of cosmic shear provides an effective way of mapping curvature fluctuations, because it affects {\it any} light rays whether they intercept mass clumps or not. We discuss a range of astrophysical applications of the principal manifestation of shear - the distortion of images. It will be shown that the quickest way of testing the existence of shear in the near Universe is to look at the shape of Einstein rings. The fact that most of these rings are circular to a large extent means, statistically speaking, shear occurs at a much lower level than the expectation based upon our current understanding of the inhomogeneous Universe. While inflation may account for the mean geometry, it offers no means of stabilizing it against the fluctuations caused by non-linear matter clumping at low redshift. Either this clumping is actually much less severe, or the physical mechanism responsible for shaping the large scale curvature has been active not only during the very early epochs, but also at all subsequent times. Might it be the vital `interface' between expansion on Hubble distances and gravity on cluster scales and beneath?Comment: 16 pages, 3 figures, 18 equations. ApJ in pres

    The temperature structure in the core of Sersic 159-03

    Full text link
    We present results from a new 120 ks XMM-Newton observation of the cluster of galaxies Sersic 159-03. In this paper we focus on the high-resolution X-ray spectra obtained with the Reflection Grating Spectrometer (RGS). The spectra allow us to constrain the temperature structure in the core of the cluster and determine the emission measure distribution as a function of temperature. We also fit the line widths of mainly oxygen and iron lines.Comment: 7 pages and 4 figures. Contribution to the proceedings of the COSPAR Scientific Assembly, session E1.2 "Clusters of Galaxies: New Insights from XMM-Newton, Chandra and INTEGRAL", july 2004, Paris (France). Accepted for publication in Advances in Space Researc
    • 

    corecore