519 research outputs found
Newtonian Planetary Ephemerides 1800-2000 - Development Ephemeris Number 28
Computer-calculated Newtonian ephemerides, 1800-2000, for nine principal planets - Development ephemeris number 2
Understanding, justifying, and optimizing radiation exposure for CT imaging in nephrourology
An estimated 4-5 million CT scans are performed in the USA every year to investigate nephrourological diseases such as urinary stones and renal masses. Despite the clinical benefits of CT imaging, concerns remain regarding the potential risks associated with exposure to ionizing radiation. To assess the potential risk of harmful biological effects from exposure to ionizing radiation, understanding the mechanisms by which radiation damage and repair occur is essential. Although radiation level and cancer risk follow a linear association at high doses, no strong relationship is apparent below 100 mSv, the doses used in diagnostic imaging. Furthermore, the small theoretical increase in risk of cancer incidence must be considered in the context of the clinical benefit derived from a medically indicated CT and the likelihood of cancer occurrence in the general population. Elimination of unnecessary imaging is the most important method to reduce imaging-related radiation; however, technical aspects of medically justified imaging should also be optimized, such that the required diagnostic information is retained while minimizing the dose of radiation. Despite intensive study, evidence to prove an increased cancer risk associated with radiation doses below ~100 mSv is lacking; however, concerns about ionizing radiation in medical imaging remain and can affect patient care. Overall, the principles of justification and optimization must remain the basis of clinical decision-making regarding the use of ionizing radiation in medicine
The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables
The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay
theory, operates with nonosculating Andoyer elements. This situation parallels
a similar phenomenon that often happens (but seldom gets noticed) in orbital
dynamics, when the standard Lagrange-type or Delaunay-type planetary equations
unexpectedly render nonosculating orbital elements. In orbital mechanics,
osculation loss happens when a velocity-dependent perturbation is plugged into
the standard planetary equations. In attitude mechanics, osculation is lost
when an angular-velocity-dependent disturbance is plugged in the standard
dynamical equations for the Andoyer elements. We encounter exactly this
situation in the theory of Earth rotation, because this theory contains an
angular-velocity-dependent perturbation (the switch from an inertial frame to
that associated with the precessing ecliptic of date).
While the osculation loss does not influence the predictions for the figure
axis of the planet, it considerably alters the predictions for the
instantaneous spin-axis' orientation. We explore this issue in great detail
A First Assessment of the Corrections for the Consistency of the IAU2000 and IAU2006 Precession-Nutation Models
The Earth precession-nutation model endorsed by resolutions of each the International Astronomical Union and the International Union of Geodesy and Geophysics is composed of two theories developed independently, namely IAU2006 precession and IAU2000A nutation. The IAU2006 precession was adopted to supersede the precession part of the IAU 2000A precession-nutation model and tried to get the new precession theory dynamically consistent with the IAU2000A nutation. However, full consistency was not reached, and slight adjustments of the IAU2000A nutation amplitudes at the micro arcsecond level were required to ensure consistency. The first set of formulae for these corrections derived by Capitaine et al. (Astrophys 432(1):355–367, 2005), which was not included in IAU2006 but provided in some standards and software for computing nutations. Later, Escapa et al. showed that a few additional terms of the same order of magnitude have to be added to the 2005 expressions to get complete dynamical consistency between the official precession and nutation models. In 2018 Escapa and Capitaine made a joint review of the problem and proposed three alternative ways of nutation model and its parameters to achieve consistency to certain different extents, although no estimation of their respective effects could be worked out to illustrate the proposals. Here we present some preliminary results on the assessment of the effects of each of the three sets of corrections suggested by Escapa and Capitaine (Proceedings of the Journées, des Systémes de Référence et de la Rotation Terrestre: Furthering our Knowledge of Earth Rotation, Alicante, 2018) by testing them in conjunction with the conventional celestial pole offsets given in the IERS EOP14C04 time series.The four first authors were partially supported by Spanish Project AYA2016-79775-P (AEI/FEDER, UE)
Reconsidering the galactic coordinate system
Initially defined by the IAU in 1958, the galactic coordinate system was
thereafter in 1984 transformed from the B1950.0 FK4-based system to the J2000.0
FK5-based system. In 1994, the IAU recommended that the dynamical reference
system FK5 be replaced by the ICRS, which is a kinematical non-rotating system
defined by a set of remote radio sources. However the definition of the
galactic coordinate system was not updated. We consider that the present
galactic coordinates may be problematic due to the unrigorous transformation
method from the FK4 to the FK5, and due to the non-inertiality of the FK5
system with respect to the ICRS. This has led to some confusions in
applications of the galactic coordinates. We tried to find the transformation
matrix in the framework of the ICRS after carefully investigating the
definition of the galactic coordinate system and transformation procedures,
however we could not find a satisfactory galactic coordinate system that is
connected steadily to the ICRS. To avoid unnecessary misunderstandings, we
suggest to re-consider the definition of the galactic coordinate system which
should be directly connected with the ICRS for high precise observation at
micro-arcsecond level.Comment: 10 pages, 3 figures, accepted for publication in A&
Hydrazones and Thiosemicarbazones Targeting Protein-Protein-Interactions of SARS-CoV-2 Papain-like Protease
The papain-like protease (PLpro) of SARS-CoV-2 is essential for viral propagation and, additionally, dysregulation of the host innate immune system. Using a library of 40 potential metal-chelating compounds we performed an X-ray crystallographic screening against PLpro. As outcome we identified six compounds binding to the target protein. Here we describe the interaction of one hydrazone (H1) and five thiosemicarbazone (T1-T5) compounds with the two distinct natural substrate binding sites of PLpro for ubiquitin and ISG15. H1 binds to a polar groove at the S1 binding site by forming several hydrogen bonds with PLpro. T1-T5 bind into a deep pocket close to the polyubiquitin and ISG15 binding site S2. Their interactions are mainly mediated by multiple hydrogen bonds and further hydrophobic interactions. In particular compound H1 interferes with natural substrate binding by sterical hindrance and induces conformational changes in protein residues involved in substrate binding, while compounds T1-T5 could have a more indirect effect. Fluorescence based enzyme activity assay and complementary thermal stability analysis reveal only weak inhibition properties in the high micromolar range thereby indicating the need for compound optimization. Nevertheless, the unique binding properties involving strong hydrogen bonding and the various options for structural optimization make the compounds ideal lead structures. In combination with the inexpensive and undemanding synthesis, the reported hydrazone and thiosemicarbazones represent an attractive scaffold for further structure-based development of novel PLpro inhibitors by interrupting protein-protein interactions at the S1 and S2 site
Lorentz Covariant Theory of Light Propagation in Gravitational Fields of Arbitrary-Moving Bodies
The Lorentz covariant theory of propagation of light in the (weak)
gravitational fields of N-body systems consisting of arbitrarily moving
point-like bodies with constant masses is constructed. The theory is based on
the Lienard-Wiechert presentation of the metric tensor. A new approach for
integrating the equations of motion of light particles depending on the
retarded time argument is applied. In an approximation which is linear with
respect to the universal gravitational constant, G, the equations of light
propagation are integrated by quadratures and, moreover, an expression for the
tangent vector to the perturbed trajectory of light ray is found in terms of
instanteneous functions of the retarded time. General expressions for the
relativistic time delay, the angle of light deflection, and gravitational red
shift are derived. They generalize previously known results for the case of
static or uniformly moving bodies. The most important applications of the
theory are given. They include a discussion of the velocity dependent terms in
the gravitational lens equation, the Shapiro time delay in binary pulsars, and
a precise theoretical formulation of the general relativistic algorithm of data
processing of radio and optical astrometric measurements in the non-stationary
gravitational field of the solar system. Finally, proposals for future
theoretical work being important for astrophysical applications are formulated.Comment: 77 pages, 7 figures, list of references is updated, to be published
in Phys. Rev. D6
Astrometry and geodesy with radio interferometry: experiments, models, results
Summarizes current status of radio interferometry at radio frequencies
between Earth-based receivers, for astrometric and geodetic applications.
Emphasizes theoretical models of VLBI observables that are required to extract
results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the
achievements of VLBI during the past two decades in reference frames, Earth
orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys.,
Vol. 70, Oct. 199
Glycinergic interneurons are functionally integrated into the inspiratory network of mouse medullary slices
Neuronal activity in the respiratory network is functionally dependent on inhibitory synaptic transmission. Using two-photon excitation microscopy, we analyzed the integration of glycinergic neurons in the isolated inspiratory pre-Bötzinger complex-driven network of the rhythmic slice preparation. Inspiratory (96%) and ‘tonic’ expiratory neurons (4%) were identified via an increase or decrease, respectively, of the cytosolic free calcium concentration during the inspiratory-related respiratory burst. Furthermore, in BAC-transgenic mice expressing EGFP under the control of the GlyT2-promoter, 50% of calcium-imaged inspiratory neurons were glycinergic. Inspiratory bursting of glycinergic neurons in the slice was confirmed by whole-cell recording. We also found glycinergic neurons that receive phasic inhibition from other glycinergic neurons. Our calcium imaging data show that glycinergic neurons comprise a large population of inspiratory neurons in the pre-Bötzinger complex-driven network of the rhythmic slice preparation
Low- and high-molecular-weight urinary proteins as predictors of response to rituximab in patients with membranous nephropathy: a prospective study
Background. Selective urinary biomarkers have been considered superior to total proteinuria in predicting response to treatment and outcome in patients with membranous nephropathy (MN). Methods. We prospectively tested whether urinary (U) excretion of retinol-binding protein (RBP), α1-microglobulin (α1M), albumin, immunoglobulinIgG and IgM and/or anti-phospholipase 2 receptor (PLA2R) levels could predict response to rituximab (RTX) therapy better than standard measures in MN. We also correlated changes in antibodies to PLA2R with these urinary biomarkers. Results. Twenty patients with MN and proteinuria (P) >5 g/24 h received RTX (375 mg/m2 × 4) and at 12 months, 1 patient was in complete remission (CR), 9 were in partial remission (PR), 5 had a limited response (LR) and 4 were non-responders (NR). At 24 months, CR occurred in 4, PR in 12, LR in 1, NR in 2 and 1 patient relapsed. By simple linear regression analysis, UIgG at baseline (mg/24 h) was a significant predictor of change in proteinuria at 12 months (Δ urinary protein) (P = 0.04). In addition, fractional excretion (FE) of IgG, urinary alpha 1 microglobulin (Uα1M) (mg/24 h) and URBP (μg/24 h) were also predictors of response (P = 0.05, 0.04, and 0.03, respectively). On the other hand, UIgM, FEIgM, albumin and FE albumin did not predict response (P = 0.10, 0.27, 0.22 and 0.20, respectively). However, when results were analyzed in relation to proteinuria at 24 months, none of the U markers that predicted response at 12 m could predict response at 24 m (P = 0.55, 0.42, 0.29 and 0.20). Decline in anti-PLA2R levels was associated with and often preceded urinary biomarker response but positivity at baseline was not a predictor of proteinuria response. Conclusions. The results suggest that in patients with MN, quantification of low-, medium- and high-molecular-weight urinary proteins may be associated with rate of response to RTX, but do not correlate with longer term outcomes
- …