764 research outputs found

    Webjacking

    Get PDF

    Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture

    Get PDF
    Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture.BackgroundThe interaction of the most common crystal in human urine, calcium oxalate dihydrate (COD), with the surface of monkey renal epithelial cells (BSC-1 line) was studied to identify initiating events in kidney stone formation.MethodsTo determine if COD crystals could nucleate directly onto the apical cell surface, a novel technique utilizing vapor diffusion of oxalic acid was employed. Cells were grown to confluence in the inner four wells of 24-well plates. At the start of each experiment, diethyloxalate in water was placed into eight adjacent wells, and the plates were sealed tightly with tape so that oxalic acid vapor diffused into a calcium-containing buffer overlying the cells.ResultsSmall crystals were visualized on the cell surface after two hours, and by six hours the unambiguous habitus of COD was confirmed. Nucleation onto cells occurred almost exclusively via the (001) face, one that is only rarely observed when COD crystals nucleate onto inanimate surfaces. Similar results were obtained when canine renal epithelial cells (MDCK line) were used as a substrate for nucleation. Initially, COD crystals were internalized almost as quickly as they formed on the apical cell surface.ConclusionsFace-specific COD crystal nucleation onto the apical surface of living renal epithelial cells followed by internalization is a heretofore unrecognized physiological event, suggesting a new mechanism to explain crystal retention within the nephron, and perhaps kidney stone formation when this process is dysregulated or overwhelmed

    Role of Calcium Oxalate Monohydrate Crystal Interactions with Renal Epithelial Cells in the Pathogenesis of Nephrolithiasis: A Review

    Get PDF
    Renal tubular fluid in the distal nephron is supersaturated with calcium and oxalate ions that nucleate to form crystals of calcium oxalate monohydrate (COM), the most common crystal in renal stones. How these nascent crystals are retained in the nephron to form calculi in certain individuals is not known. Recent studies from this laboratory have demonstrated that COM crystals can bind within seconds to the apical surface of renal epithelial cells, suggesting one mechanism whereby crystals could be retained in the tubule. Adherence of crystals to cells along the nephron may be opposed by specific urinary anions such as glycosaminoglycans, uropontin, nephrocalcin, and citrate. In culture, adherent crystals are quickly internalized by renal cells, and reorganization of the cytoskeleton, alterations in gene expression, and initiation of proliferation can ensue. Each of these cellular events appears to be regulated by extra-cellular factors. Identification of molecules in tubular fluid and on the cell surface that determine whether a crystal-cell interaction results in retention of the crystal or its passage out of the nephron appears critical for understanding the pathogenesis of nephrolithiasis

    Understanding the United Kingdom marine aquarium tradeā€“a mystery shopper study of species on sale

    Get PDF
    In this study, we conducted a unique survey of marine ornamental fishes appearing in UK retail stores, as well as a review of government trade statistics, with the aim to significantly strengthen the evidenceā€base in support of future management initiatives. Fifty marine aquarium retailers were visited. A total of 380 marine aquarium fish species (4926 individuals), from 48 families were recorded with the largest proportion of individuals belonging to the families Pomacentridae, Acanthuridae, Apogonidae, Labridae, Pomacanthidae, Gobiidae and Labridae. The majority of fishes for sale (91% of species) originated from the Indoā€Pacific Ocean, with only a small number (9% of species) derived from the Atlantic Ocean. However, exact sources of individual species were unclear and poorly documented. Government trade statistics revealed that the ornamental reefā€fish trade in the UK grew markedly between 1996 and 2008 with a rapid acceleration in 2003ā€“2004. However, imports have declined since 2008 and amounted to less than 305,000 kg in 2017 with an economic value of UK Ā£3 million (c. US $3.8). Recent trade data (2017) identify Indonesia, USA, Philippines and the Maldives as the most important countries in terms of imports to the UK. The UK is an important exporter of wildā€caught fishes via transā€shipment, but also production of tankā€reared animals. Several species observed for sale in the UK have been designated by the IUCN and CITES as being of conservation concern, although all these animals are thought to have been captiveā€reared

    Sulfate but not thiosulfate reduces calculated and measured urinary ionized calcium and supersaturation: implications for the treatment of calcium renal stones

    Get PDF
    BACKGROUND: Urinary sulfate (SO 4 2āˆ’ ) and thiosulfate (S 2 O 3 2āˆ’ ) can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa) and on supersaturation (SS) of calcium oxalate (CaOx) and calcium phosphate (CaP), and measured their in vitro effects on iCa and the upper limit of stability (ULM) of these salts. METHODS: Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1). A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS) (Model 2). The Joint Expert Speciation System (JESS) was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations. RESULTS: Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect. CONCLUSION: Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease

    Human-derived nanoparticles and vascular response to injury in rabbit carotid arteries: Proof of principle

    Get PDF
    Self-calcifying, self-replicating nanoparticles have been isolated from calcified human tissues. However, it is unclear if these nanoparticles participate in disease processes. Therefore, this study was designed to preliminarily test the hypothesis that human-derived nanoparticles are causal to arterial disease processes. One carotid artery of 3 kg male rabbits was denuded of endothelium; the contralateral artery remained unoperated as a control. Each rabbit was injected intravenously with either saline, calcified, or decalcified nanoparticles cultured from calcified human arteries or kidney stones. After 35 days, both injured and control arteries were removed for histological examination. Injured arteries from rabbits injected with saline showed minimal, eccentric intimal hyperplasia. Injured arteries from rabbits injected with calcified kidney stone- and arterial-derived nanoparticles occluded, sometimes with canalization. The calcified kidney stone-derived nanoparticles caused calcifications within the occlusion. Responses to injury in rabbits injected with decalcified kidney stone-derived nanoparticles were similar to those observed in saline-injected animals. However, decalcified arterial-derived nanoparticles produced intimal hyperplasia that varied from moderate to occlusion with canalization and calcification. This study offers the first evidence that there may be a causal relationship between human-derived nanoparticles and response to injury including calcification in arteries with damaged endothelium

    Understanding, justifying, and optimizing radiation exposure for CT imaging in nephrourology

    Get PDF
    An estimated 4-5 million CT scans are performed in the USA every year to investigate nephrourological diseases such as urinary stones and renal masses. Despite the clinical benefits of CT imaging, concerns remain regarding the potential risks associated with exposure to ionizing radiation. To assess the potential risk of harmful biological effects from exposure to ionizing radiation, understanding the mechanisms by which radiation damage and repair occur is essential. Although radiation level and cancer risk follow a linear association at high doses, no strong relationship is apparent below 100 mSv, the doses used in diagnostic imaging. Furthermore, the small theoretical increase in risk of cancer incidence must be considered in the context of the clinical benefit derived from a medically indicated CT and the likelihood of cancer occurrence in the general population. Elimination of unnecessary imaging is the most important method to reduce imaging-related radiation; however, technical aspects of medically justified imaging should also be optimized, such that the required diagnostic information is retained while minimizing the dose of radiation. Despite intensive study, evidence to prove an increased cancer risk associated with radiation doses below ~100 mSv is lacking; however, concerns about ionizing radiation in medical imaging remain and can affect patient care. Overall, the principles of justification and optimization must remain the basis of clinical decision-making regarding the use of ionizing radiation in medicine
    • ā€¦
    corecore