152 research outputs found
Trained immunity or tolerance : opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors
Article Accepted Date: 29 January 2014. ACKNOWLEDGMENTS D.C.I. received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-2010-260338 (āFungi in the setting of inflammation, allergy and autoimmune diseases: translating basic science into clinical practicesā [ALLFUN]) (awarded to M.G.N.). M.G.N. and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (awarded to M.G.N.). This work was supported, in part, by National Institutes of Health grant GM53522 to D.L.W. N.A.R.G. was supported by the Wellcome Trust.Peer reviewedPublisher PD
Recommended from our members
Brain serotonin and serotonin transporter expression in male and female postnatal rat offspring in response to perturbed early life dietary exposures
IntroductionSerotonin (5-HT) is critical for neurodevelopment and the serotonin transporter (SERT) modulates serotonin levels. Perturbed prenatal and postnatal dietary exposures affect the developing offspring predisposing to neurobehavioral disorders in the adult. We hypothesized that the postnatal brain 5-HT-SERT imbalance associated with gut dysbiosis forms the contributing gut-brain axis dependent mechanism responsible for such ultimate phenotypes.MethodsEmploying maternal diet restricted (IUGR, n=8) and high fat+high fructose (HFhf, n=6) dietary modifications, rodent brain serotonin was assessed temporally by ELISA and SERT by quantitative Western blot analysis. Simultaneously, colonic microbiome studies were performed.ResultsAt early postnatal (P) day 2 no changes in the IUGR, but a ~24% reduction in serotonin (p = 0.00005) in the HFhf group occurred, particularly in the males (p = 0.000007) revealing a male versus female difference (p = 0.006). No such changes in SERT concentrations emerged. At late P21 the IUGR group reared on HFhf (IUGR/HFhf, (n = 4) diet revealed increased serotonin by ~53% in males (p = 0.0001) and 36% in females (p = 0.023). While only females demonstrated a ~40% decrease in serotonin (p = 0.010), the males only trended lower without a significant change within the HFhf group (p = 0.146). SERT on the other hand was no different in HFhf or IUGR/RC, with only the female IUGR/HFhf revealing a 28% decrease (p = 0.036). In colonic microbiome studies, serotonin-producing Bacteriodes increased with decreased Lactobacillus at P2, while the serotonin-producing Streptococcus species increased in IUGR/HFhf at P21. Sex-specific changes emerged in association with brain serotonin or SERT in the case of Alistipase, Anaeroplasma, Blautia, Doria, Lactococcus, Proteus, and Roseburia genera.DiscussionWe conclude that an imbalanced 5-HT-SERT axis during postnatal brain development is sex-specific and induced by maternal dietary modifications related to postnatal gut dysbiosis. We speculate that these early changes albeit transient may permanently alter critical neural maturational processes affecting circuitry formation, thereby perturbing the neuropsychiatric equipoise
Sequence analysis of the membrane protein gene and nucleocapsid gene of porcine reproductive and respiratory syndrome virus isolated from a swine herd in Hungary
Porcine reproductive and respiratory syndrome virus (PRRSV) was isolated from blood samples taken at a pig farm in Hungary from pigs showing clinical signs of the disease. The virus (ABV 32) was identified as belonging to the European genotype by using type-specific monoclonal antibodies. This was confirmed by comparing the sequence of the membrane protein gene (ORF 6) and the nucleocapsid gene (ORF 7) with the American VR2332 and the European LV genotype reference strain, respectively. Analysis of the amino acid sequence of the ORF 6 and ORF 7 of ABV 32 revealed five amino acid changes in both ORFs when compared with LV, of which two changes in ORF 7 were only found in the Spanish isolates. Additionally, the ORF 7 sequence was compared with corresponding sequences of a total of 21 other European strains. Phylogenetic analysis using the PHYLIP package confirmed the close relationship between the Hungarian and the Spanish isolates. Of all the isolates analysed, ABV 32 and LV were the least related
Trained Immunity or Tolerance: Opposing Functional Programs Induced in Human Monocytes After Engagement of Various Pattern Recognition Receptors
Upon priming with Candida albicans or with the fungal cell wall component Ī²-glucan, monocytes respond with an increased cytokine production upon restimulation, a phenomenon termed trained immunity. In contrast, the prestimulation of monocytes with lipopolysaccharide has long been known to induce tolerance. Because the vast majority of commensal microorganisms belong to bacterial or viral phyla, we sought to systematically investigate the functional reprogramming of monocytes induced by the stimulation of pattern recognition receptors (PRRs) with various bacterial or viral ligands. Monocytes were functionally programmed for either enhanced (training) or decreased (tolerance) cytokine production, depending on the type and concentration of ligand they encountered. The functional reprogramming of monocytes was also associated with cell shape, granulocity, and cell surface marker modifications. The training effect required p38- and Jun N-terminal protein kinase (JNK)-mediated mitogen-activated protein kinase (MAPK) signaling, with specific signaling patterns directing the functional fate of the cell. The long-term effects on the function of monocytes were mediated by epigenetic events, with both histone methylation and acetylation inhibitors blocking the training effects. In conclusion, our experiments identify the ability of monocytes to acquire adaptive characteristics after prior activation with a wide variety of ligands. Trained immunity and tolerance are two distinct and opposing functional programs induced by the specific microbial ligands engaging the monocytes
Trained immunity or tolerance : opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors
Article Accepted Date: 29 January 2014. ACKNOWLEDGMENTS D.C.I. received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-2010-260338 (āFungi in the setting of inflammation, allergy and autoimmune diseases: translating basic science into clinical practicesā [ALLFUN]) (awarded to M.G.N.). M.G.N. and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (awarded to M.G.N.). This work was supported, in part, by National Institutes of Health grant GM53522 to D.L.W. N.A.R.G. was supported by the Wellcome Trust.Peer reviewedPublisher PD
Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors
Peer reviewedPublisher PD
Early recognition of characteristic conventional and amplitude-integrated EEG patterns of seizures in <i>SCN2A </i>and <i>KCNQ3</i>-related epilepsy in neonates
Purpose: Early recognition of seizures in neonates secondary to pathogenic variants in potassium or sodium channel coding genes is crucial, as these seizures are often resistant to commonly used anti-seizure medications but respond well to sodium channel blockers. Recently, a characteristic ictal amplitude-integrated electroencephalogram (aEEG) pattern was described in neonates with KCNQ2-related epilepsy. We report a similar aEEG pattern in seizures caused by SCN2A- and KCNQ3-pathogenic variants, as well as conventional EEG (cEEG) descriptions. Methods: International multicentre descriptive study, reporting clinical characteristics, aEEG and cEEG findings of 13 neonates with seizures due to pathogenic SCN2A- and KCNQ3-variants. As a comparison group, aEEGs and cEEGs of neonates with seizures due to hypoxic-ischemic encephalopathy (n = 117) and other confirmed genetic causes affecting channel function (n = 55) were reviewed. Results: In 12 out of 13 patients, the aEEG showed a characteristic sequence of brief onset with a decrease, followed by a quick rise, and then postictal amplitude attenuation. This pattern correlated with bilateral EEG onset attenuation, followed by rhythmic discharges ending in several seconds of post-ictal amplitude suppression. Apart from patients with KCNQ2-related epilepsy, none of the patients in the comparison groups had a similar aEEG or cEEG pattern. Discussion: Seizures in SCN2A- and KCNQ3-related epilepsy in neonates can usually be recognized by a characteristic ictal aEEG pattern, previously reported only in KCNQ2-related epilepsy, extending this unique feature to other channelopathies. Awareness of this pattern facilitates the prompt initiation of precision treatment with sodium channel blockers even before genetic results are available.</p
H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway
- ā¦