133 research outputs found

    Approaches to flame resistant polymeric materials

    Get PDF
    Four research and development areas are considered for further exploration in the quest of more flame-resistant polymeric materials. It is suggested that improvements in phenolphthalein polycarbonate processability may be gained through linear free energy relationship correlations. Looped functionality in the backbone of a polymer leads to both improved thermal resistance and increased solubility. The guidelines used in the pyrolytic carbon production constitute a good starting point for the development of improved flame-resistant materials. Numerous organic reactions requiring high temperatures and the techniques of protected functionality and latent functionality constitute the third area for exploration. Finally, some well-known organic reactions are suggested for the formation of polymers that were not made before

    Total Syntheses of Amphidinolide H and G

    Get PDF
    Eureka! The first conquest of the exceptionally potent cytotoxic agent amphidinolide H, which exhibits activity in the picomolar range against human epidermoid cancer cells, was long overdue. The successful route critically hinges upon the scrupulous optimization of the fragment-coupling events (see picture; RCM=ring-closing metathesis) and on the careful adjustment of the peripheral protecting-group pattern

    Total Syntheses of Amphidinolides B1, B4, G1, H1 and Structure Revision of Amphidinolide H2

    No full text
    Nature is a pretty unselective “chemist” when it comes to making the highly cytotoxic amphidinolide macrolides of the B/G/H series. To date, 16 different such compounds have been isolated, all of which could now be approached by a highly convergent and largely catalysis-based route (see figure). This notion is exemplified by the total synthesis of five prototype members of this family. Dinoflagellates of the genus Amphidinium produce a “library” of closely related secondary metabolites of mixed polyketide origin, which are extremely scarce but highly promising owing to the exceptional cytotoxicity against various cancer cell lines. Because of the dense array of sensitive functionalities on their largely conserved macrocyclic frame, however, these amphidinolides of the B, D, G and H types elapsed many previous attempts at their synthesis. Described herein is a robust, convergent and hence general blueprint which allowed not only to conquest five prototype members of these series, but also holds the promise of making “non-natural” analogues available by diverted total synthesis. This notion transpires for a synthesis-driven structure revision of amphidinolide H2. The successful route hinges upon a highly productive Stille–Migita cross-coupling reaction at the congested and chemically labile 1,3-diene site present in all such targets, which required the development of a modified chloride- and fluoride-free protocol. The macrocyclic ring could be formed with high efficiency and selectivity by ring-closing metathesis (RCM) engaging a vinyl epoxide unit as one of the reaction partners. Because of the sensitivity of the targets to oxidizing and reducing conditions as well as to pH changes, the proper adjustment of the protecting group pattern for the peripheral -OH functions also constitutes a critical aspect, which has to converge to silyl groups only once the diene is in place. Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) turned out to be a sufficiently mild fluoride source to allow for the final deprotection without damaging the precious macrolides

    Integrating fire-scar, charcoal and fungal spore data to study fire events in the boreal forest of northern Europe

    Get PDF
    Fire is a major disturbance agent in the boreal forest, influencing many current and future ecosystem conditions and services. Surprisingly few studies have attempted to improve the accuracy of fire-event reconstructions even though the estimates of the occurrence of past fires may be biased, influencing the reliability of the models employing those data (e.g. C stock, cycle). This study aimed to demonstrate how three types of fire proxies - fire scars from tree rings, sedimentary charcoal and, for the first time in this context, fungal spores of Neurospora - can be integrated to achieve a better understanding of past fire dynamics. By studying charcoal and Neurospora from sediment cores from forest hollows, and the fire scars from tree rings in their surroundings in the southern Fennoscandian and western Russian boreal forest, we produced composite fire-event data sets and fire-event frequencies, and estimated fire return intervals. Our estimates show that the fire return interval varied between 126 and 237 years during the last 11,000 years. The highest fire frequency during the 18th-19th century can be associated with the anthropogenic influence. Importantly, statistical tests revealed a positive relationship between other fire event indicators and Neurospora occurrence allowing us to pinpoint past fire events at times when the sedimentary charcoal was absent, but Neurospora were abundant. We demonstrated how fire proxies with different temporal resolution can be linked, providing potential improvements in the reliability of fire history reconstructions from multiple proxies.Peer reviewe

    Model based biotechnological potential analysis of Kluyveromyces marxianus central metabolism

    Get PDF
    The non-conventional yeast Kluyveromyces marxianus is an emerging industrial producer for many biotechnological processes. Here we show the application of a biomass-linked stoichiometric model of central metabolism that is experimentally validated, and mass and charge balanced for assessing the carbon conversion efficiency of wild type and modified K. marxianus. Pairs of substrates (lactose, glucose, inulin, xylose) and products (ethanol, acetate, lactate, glycerol, ethyl acetate, succinate, glutamate, phenylethanol and phenylalanine) are examined by various modeling and optimisation methods. Our model reveals the organism's potential for industrial application and metabolic engineering. Modeling results imply that the aeration regime can be used as a tool to optimise product yield and flux distribution in K. marxianus. Also rebalancing NADH and NADPH utilisation can be used to improve the efficiency of substrate conversion. Xylose is identified as a biotechnologically promising substrate for K. marxianus

    Q methodology and rural research

    Get PDF
    Traditionally, rural scholarship has been limited in its methodological approach. This has begun to change in recent years as rural researchers have embraced a range of different methodological tools. The aim of this article is to contribute to greater methodological pluralism in rural sociology by introducing readers to a method of research that is rarely engaged in the field, that is, Q methodology. The article describes the defining features of the approach as well as providing examples of its application to argue that it is a method that offers particular opportunities and synergies for rural social science research
    corecore