185 research outputs found
Fluctuation theorem and large deviation function for a solvable model of a molecular motor
We study a discrete stochastic model of a molecular motor. This discrete
model can be viewed as a \emph{minimal} ratchet model. We extend our previous
work on this model, by further investigating the constraints imposed by the
Fluctuation Theorem on the operation of a molecular motor far from equilibrium.
In this work, we show the connections between different formulations of the
Fluctuation Theorem. One formulation concerns the generating function of the
currents while another one concerns the corresponding large deviation function,
which we have calculated exactly for this model. A third formulation of FT
concerns the ratio of the probability of making one forward step to the
probability of making one backward step. The predictions of this last
formulation of the Fluctuation Theorem adapted to our model are in very good
agreement with the data of Carter and Cross [Nature, {\bf 435}, 308 (2005)] on
single molecule measurements with kinesin. Finally, we show that all the
formulations of FT can be understood from the notion of entropy production.Comment: 15 pages, 9 figure
CSF Protein Level of Neurotransmitter Secretion, Synaptic Plasticity, and Autophagy in PD and DLB
BACKGROUND: Molecular pathways associated with α-synuclein proteostasis have been detected in genetic studies and in cell models and include autophagy, ubiquitin-proteasome system, mitochondrial homeostasis, and synaptic plasticity. However, we lack biomarkers that are representative for these pathways in human biofluids. OBJECTIVE: The objective of this study was to evaluate CSF protein profiles of pathways related to α-synuclein proteostasis. METHODS: We assessed CSF protein profiles associated with neurotransmitter secretion, synapse plasticity, and autophagy in 2 monocentric cohorts with α-synucleinopathy (385 PD patients and 67 DLB patients). We included 80 PD patients and 17 DLB patients with variants in the glucocerebrosidase gene to serve as proxy for accelerated α-synuclein pathology with pronounced clinical trajectories. RESULTS: (1) Proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy were lower in PD and DLB patients compared with healthy controls. (2) These patterns were more pronounced in DLB than in PD patients, accentuated by GBA variant status in both entities. (3) CSF levels of these proteins were positively associated with CSF levels of total α-synuclein, with lower levels of proteostasis proteins related to lower levels of total α-synuclein. (4) These findings could be confirmed longitudinally. PD patients with low CSF profiles of proteostasis proteins showed lower CSF levels of α-synuclein longitudinally compared with PD patients with a normal proteostasis profile. CONCLUSION: CSF proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy might serve as biomarkers related to α-synuclein proteostasis in PD and DLB
Sharing tasks or sharing actions? Evidence from the joint Simon task.
In a joint Simon task, a pair of co-acting individuals divide labors of performing a choice-reaction task in such a way that each actor responds to one type of stimuli and ignores the other type that is assigned to the co-actor. It has been suggested that the actors share the mental representation of the joint task and perform the co-actorâs trials as if they were their own. However, it remains unclear exactly which aspects of co-actorâs task-set the actors share in the joint Simon task. The present study addressed this issue by manipulating the proportions of compatible and incompatible trials for one actor (inducer actor) and observing its influences on the performance of the other actor (diagnostic actor) for whom there were always an equal proportion of compatible and incompatible trials. The design of the present study disentangled the effect of trial proportion from the confounding effect of compatibility on the preceding trial. The results showed that the trial proportions for the inducer actor had strong influences on the inducer actorâs own performance, but it had little influence on the diagnostic actorâs performance. Thus, the diagnostic actor did not represent aspects of the inducer actorâs task-set beyond stimuli and responses of the inducer actor. We propose a new account of the effect of preceding compatibility on the joint Simon effect.Action Contro
The Role of Attention in a Joint-Action Effect
The most common explanation for joint-action effects has been the action co-representation account in which observation of another's action is represented within one's own action system. However, recent evidence has shown that the most prominent of these joint-action effects (i.e., the Social Simon effect), can occur when no co-actor is present. In the current work we examined whether another joint-action phenomenon (a movement congruency effect) can be induced when a participant performs their part of the task with a different effector to that of their co-actor and when a co-actor's action is replaced by an attention-capturing luminance signal. Contrary to what is predicted by the action co-representation account, results show that the basic movement congruency effect occurred in both situations. These findings challenge the action co-representation account of this particular effect and suggest instead that it is driven by bottom-up mechanisms
NfL and pNfH are increased in Friedreich's ataxia
Objective: To assess neurofilaments as neurodegenerative biomarkers in serum of patients with Friedreichâs ataxia. /
Methods: Single molecule array measurements of neurofilament light (NfL) and heavy chain (pNfH) in 99 patients with genetically confirmed Friedreichâs ataxia. Correlation of NfL/pNfH serum levels with disease severity, disease duration, age, age at onset, and GAA repeat length. /
Results: Median serum levels of NfL were 21.2 pg/ml (range 3.6â49.3) in controls and 26.1 pg/ml (0â78.1) in Friedreichâs ataxia (pâ=â0.002). pNfH levels were 23.5 pg/ml (13.3â43.3) in controls and 92 pg/ml (3.1â303) in Friedreichâs ataxia (pâ=â0.0004). NfL levels were significantly increased in younger patients (age 16â31 years, pâ<â0.001) and patients aged 32â47 years (pâ=â0.008), but not in patients of age 48 years and older (pâ=â0.41). In a longitudinal assessment, there was no difference in NfL levels in 14 patients with repeated sampling 2 years after baseline measurement. Levels of NfL correlated inversely with GAA1 repeat length (râ=ââ 0.24, pâ=â0.02) but not with disease severity (râ=ââ 0.13, pâ=â0.22), disease duration (râ=ââ 0.06, pâ=â0.53), or age at onset (râ=â0.05, pâ=â0.62). /
Conclusion: Serum levels of NfL and pNfH are elevated in Friedreichâs ataxia, but differences to healthy controls decrease with increasing age. Long-term longitudinal data are required to explore whether this reflects a selection bias from early death of more severely affected individuals or a slowing down of the neurodegenerative process with age. In a pilot study over 2 years of follow-upâa period relevant for biomarkers indicating treatment effectsâwe found NfL levels to be stable
Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study
Background: When we observe an individual performing a motor act (e.g. grasping a cup) we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping) and the intention underlying it (i.e. grasping for drinking). Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observerâs capacity to understand what the agent is doing and why. Methodology/Principal Findings: Volunteers were presented with two-frame video-clips. The first frame (T0) showed an object with or without context; the second frame (T1) showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs) were recorded time-locked with the frame showing the hand-object interaction (T1). The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatiotemporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1) bilateral posterior cortical activations; 2) a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3) a significant increase of the activations of the right temporo-parieta
Prevalence and Subtypes of Mild Cognitive Impairment in Parkinson's Disease.
The current study examined the prevalence and subtypes of Mild Cognitive Impairment (MCI) in an Australian sample of people with Parkinson's Disease (PD). Seventy participants with PD completed neuropsychological assessments of their cognitive performance, using MDS Task Force Level II diagnostic criteria for PD-MCI. A cut-off score of less than one standard deviation (SD) below normative data determined impaired performance on a neuropsychological test. Of 70 participants, 45 (64%) met Level II diagnostic criteria for PD-MCI. Among those with PD-MCI, 42 (93%) were identified as having multiple domain impairment (28 as amnestic multiple domain and 14 as nonamnestic multiple domain). Single domain impairment was less frequent (2 amnestic/1 nonamnestic). Significant differences were found between the PD-MCI and Normal Cognition groups, across all cognitive domains. Multiple domain cognitive impairment was more frequent than single domain impairment in an Australian sample of people with PD. However, PD-MCI is heterogeneous and current prevalence and subtyping statistics may be an artifact of variable application methods of the criteria (e.g., cut off scores and number of tests). Future longitudinal studies refining the criteria will assist with subtyping the progression of PD-MCI, while identifying individuals who may benefit from pharmacological and nonpharmacological interventions
Scenario of the spread of the invasive species Zaprionus indianus Gupta, 1970 (Diptera, Drosophilidae) in Brazil
Zaprionus indianus was first recorded in Brazil in 1999 and rapidly spread throughout the country. We have obtained data on esterase loci polymorphisms (Est2 and Est3), and analyzed them, using Landscape Shape Interpolation and the Monmonier Maximum Difference Algorithm to discover how regional invasion occurred. Hence, it was apparent that Z. indianus, after first arriving in SĂŁo Paulo state, spread throughout the country, probably together with the transportation of commercial fruits by way of the two main Brazilian freeways, BR 153, to the south and the surrounding countryside, and the BR 116 along the coast and throughout the north-east
Abilities to explicitly and implicitly infer intentions from actions in adults with autism spectrum disorder
Previous research suggests that Autism Spectrum Disorder (ASD) might be associated with impairments on implicit but not explicit mentalizing tasks. However, such comparisons are made difficult by the heterogeneity of stimuli and the techniques used to measure mentalizing capabilities. We tested the abilities of 34 individuals (17 with ASD) to derive intentions from othersâ actions during both explicit and implicit tasks and tracked their eye-movements. Adults with ASD displayed explicit but not implicit mentalizing deficits. Adults with ASD displayed typical fixation patterns during both implicit and explicit tasks. These results illustrate an explicit mentalizing deficit in adults with ASD, which cannot be attributed to differences in fixation patterns
- âŠ