69 research outputs found

    Interacting hands: The role of attention for the joint Simon effect

    Full text link
    Recent research in monkeys and humans has shown that the presence of the hands near an object enhances spatial processing for objects presented near the hand. This study aimed to test the effect of hand position on the joint Simon effect. In Experiment 1, two human co-actors shared a Simon task while placing their response hands either near the objects appearing on the monitor or away from the monitor. Experiment 2 varied each co-actor’s hand position independently. Experiment 3 tested whether enhanced spatial processing for objects presented near the hand is obtained when replacing one of the two co-actors by a non-human event-producing rubber hand. Experiment 1 provided evidence for a Simon effect. Hand position significantly modulated the size of the Simon effect in the joint Simon task showing an increased Simon effect when the hands of both actors were located near the objects on the monitor, than when they were located away from the monitor. Experiment 2 replicated this finding showing an increased Simon effect when the actor’s hand was located near the objects on the monitor, but only when the co-actor also produced action events in spatial reference. A similar hand position effect was observed in Experiment 3 when a non-human rubber hand replaced the human co-actor. These findings suggest that external action events that are produced in spatial reference bias the distribution of attention to the area near the hand. This strengthens the weight of the spatial response codes (referential coding) and hence increases the joint Simon effect

    The Multimodal Go-Nogo Simon Effect: Signifying the Relevance of Stimulus Features in the Go-Nogo Simon Paradigm Impacts Event Representations and Task Performance

    Get PDF
    Numerous studies have shown that stimulus-response-compatibility (SRC) effects in the go-nogo version of the Simon task can be elicited as a result of performing the task together with another human or non-human agent (e.g., a Japanese-waving-cat, a working-clock, or a ticking-metronome). A parsimonious explanation for both social and non-social SRC effects is that highlighting the spatial significance of alternative (non-/social) action events makes action selection more difficult. This holds even when action events are task-irrelevant. Recent findings, however, suggest that this explanation holds only for cases of a modality correspondence between the Simon task as such (i.e., auditory or visual) and the alternative (non-/social) action event that needs to be discriminated. However, based on the fact that perception and action are represented by the same kind of codes, an event that makes the go-nogo decision more challenging should impact go-nogo Simon task performance. To tackle this issue, the present study tested if alternative stimulus events that come from a different sensory modality do impact SRC effects in the go-nogo version of the Simon task. This was tested in the presence and absence of alternative action events of a human co-actor. In a multimodal (auditory–visual) go-nogo Simon paradigm, participants responded to their assigned stimulus – e.g., a single auditory stimulus while ignoring the alternative visual stimulus or vice versa – in the presence or absence of a human co-actor (i.e., joint and single go-nogo condition). Results showed reliable SRCs in both, single and joint go-nogo Simon task conditions independent of the modality participants had to respond to. Although a correspondence between stimulus material and attention-grabbing event might be an efficient condition for SRCs to emerge, the driving force underlying the emergence of SRCs rather appears to be whether the attentional focus prevents or facilitates alternative events to be integrated. Thus, under task conditions in which the attentional focus is sufficiently broad to enable the integration and thus cognitive representation of alternative events, go-nogo decisions become more difficult, resulting in reliable SRCs in single and joint go-nogo Simon tasks

    Dual-Tasking in the Near-Hand Space: Effects of Stimulus-Hand Proximity on Between-Task Shifts in the Psychological Refractory Period Paradigm

    Get PDF
    Two decades of research indicate that visual processing is typically enhanced for items that are in the space near the hands (near-hand space). Enhanced attention and cognitive control have been thought to be responsible for the observed effects, amongst others. As accumulating experimental evidence and recent theories of dual-tasking suggest an involvement of cognitive control and attentional processes during dual tasking, dual-task performance may be modulated in the near-hand space. Therefore, we performed a series of three experiments that aimed to test if the near-hand space affects the shift between task-component processing in two visual-manual tasks. We applied a Psychological Refractory Period Paradigm (PRP) with varying stimulus-onset asynchrony (SOA) and manipulated stimulus-hand proximity by placing hands either on the side of a computer screen (near-hand condition) or on the lap (far-hand condition). In Experiment 1, Task 1 was a number categorization task (odd vs. even) and Task 2 was a letter categorization task (vowel vs. consonant). Stimulus presentation was spatially segregated with Stimulus 1 presented on the right side of the screen, appearing first and then Stimulus 2, presented on the left side of the screen, appearing second. In Experiment 2, we replaced Task 2 with a color categorization task (orange vs. blue). In Experiment 3, Stimulus 1 and Stimulus 2 were centrally presented as a single bivalent stimulus. The classic PRP effect was shown in all three experiments, with Task 2 performance declining at short SOA while Task 1 performance being relatively unaffected by task-overlap. In none of the three experiments did stimulus-hand proximity affect the size of the PRP effect. Our results indicate that the switching operation between two tasks in the PRP paradigm is neither optimized nor disturbed by being processed in near-hand space

    How deeply do we include robotic agents in the self?

    Get PDF
    In human–human interactions, a consciously perceived high degree of self–other overlap is associated with a higher degree of integration of the other person's actions into one's own cognitive representations. Here, we report data suggesting that this pattern does not hold for human–robot interactions. Participants performed a social Simon task with a robot, and afterwards indicated the degree of self–other overlap using the Inclusion of the Other in the Self (IOS) scale. We found no overall correlation between the social Simon effect (as an indirect measure of self–other overlap) and the IOS score (as a direct measure of self–other overlap). For female participants we even observed a negative correlation. Our findings suggest that conscious and unconscious evaluations of a robot may come to different results, and hence point to the importance of carefully choosing a measure for quantifying the quality of human–robot interactions

    COGNITIVE NEUROSCIENCE Through the looking glass: counter-mirror activation following incompatible sensorimotor learning

    Get PDF
    Abstract The mirror system, comprising cortical areas that allow the actions of others to be represented in the observer's own motor system, is thought to be crucial for the development of social cognition in humans. Despite the importance of the human mirror system, little is known about its origins. We investigated the role of sensorimotor experience in the development of the mirror system. Functional magnetic resonance imaging was used to measure neural responses to observed hand and foot actions following one of two types of training. During training, participants in the Compatible (control) group made mirror responses to observed actions (hand responses were made to hand stimuli and foot responses to foot stimuli), whereas the Incompatible group made counter-mirror responses (hand to foot and foot to hand). Comparison of these groups revealed that, after training to respond in a counter-mirror fashion, the relative action observation properties of the mirror system were reversed; areas that showed greater responses to observation of hand actions in the Compatible group responded more strongly to observation of foot actions in the Incompatible group. These results suggest that, rather than being innate or the product of unimodal visual or motor experience, the mirror properties of the mirror system are acquired through sensorimotor learning

    Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis.

    Get PDF
    BACKGROUND Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research

    Rethinking ‘Rational Imitation’ in 14-Month-Old Infants: A Perceptual Distraction Approach

    Get PDF
    In their widely noticed study, Gergely, Bekkering, and Király (2002) showed that 14-month-old infants imitated an unusual action only if the model freely chose to perform this action and not if the choice of the action could be ascribed to external constraints. They attributed this kind of selective imitation to the infants' capacity of understanding the principle of rational action. In the current paper, we present evidence that a simpler approach of perceptual distraction may be more appropriate to explain their results. When we manipulated the saliency of context stimuli in the two original conditions, the results were exactly opposite to what rational imitation predicts. Based on these findings, we reject the claim that the notion of rational action plays a key role in selective imitation in 14-month-olds

    When a Social Experimenter Overwrites Effects of Salient Objects in an Individual Go/No-Go Simon Task – An ERP Study

    No full text
    When two persons share a Simon task, a joint Simon effect occurs. The task co-representation account assumes that the joint Simon effect is the product of a vicarious representation of the co-actor’s task. In contrast, recent studies show that even (non-human) event-producing objects could elicit a Simon effect in an individual go/no-go Simon task arguing in favor of the referential coding account. For the human-induced Simon effect, a modulation of the P300 component in Electroencephalography (EEG) is typically considered as a neural indicator of the joint Simon effect and task co-representation. Showing that the object-induced Simon effects also modulates the P300 would lead to a re-evaluation of the interpretation of the P300 in individual go/no-go and joint Simon task contexts. To do so, the present study conceptually replicated Experiment 1 from Dolk et al. (2013a) adding EEG recordings and an experimenter controlling the EEG computer to test whether a modulation of the P300 can also be elicited by adding a Japanese waving cat to the task context. Subjects performed an individual go/no-go Simon task with or without a cat placed next to them. Results show an overall Simon effect regardless of the cat’s presence and no modulatory influence of the cat on the P300 (Experiment 1), even when conceivably interfering context factors are diminished (Experiment 2). These findings may suggest that the presence of a spatially aligned experimenter in the laboratory may produce an overall Simon effect overwriting a possible modulation of the Japanese waving cat

    Learning mechanisms enabling perfect time-sharing in dual tasks

    No full text

    Exprak 2016_17_Action_and_Perception

    No full text
    Experimental course at the University of Muenster (SS 2016/WS 2016/2017
    • …
    corecore