162 research outputs found

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| <0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    Search for single production of vector-like T quarks decaying into Ht or Zt in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for the single production of an up-type vector-like quark (T) decaying as T → Ht or T → Zt. The search utilises a dataset of pp collisions at s√ = 13 TeV collected with the ATLAS detector during the 2015–2018 data-taking period of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Data are analysed in final states containing a single lepton with multiple jets and b-jets. The presence of boosted heavy resonances in the event is exploited to discriminate the signal from the Standard Model background. No significant excess above the Standard Model expectation is observed, and 95% CL upper limits are set on the production cross section of T quarks in different decay channels. The results are interpreted in several benchmark scenarios to set limits on the mass and universal coupling strength (Îș) of the vector-like quark. For singlet T quarks, Îș values above 0.53 are excluded for all masses below 2.3 TeV. At a mass of 1.6 TeV, Îș values as low as 0.35 are excluded. For T quarks in the doublet scenario, where the production cross section is much lower, Îș values above 0.72 are excluded for all masses below 1.7 TeV, and this exclusion is extended to Îș above 0.55 for low masses around 1.0 TeV

    Search for excited τ-leptons and leptoquarks in the final state with τ-leptons and jets in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search is reported for excited τ-leptons and leptoquarks in events with two hadronically decaying τ-leptons and two or more jets. The search uses proton-proton (pp) collision data at s√ = 13 TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015–2018. The total integrated luminosity is 139 fb−1. The excited τ-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary τ-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a τ-lepton. No excess over the background prediction is observed. Excited τ-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale Λ set to 10 TeV. At the extreme limit of model validity where Λ is set equal to the excited τ-lepton mass, excited τ-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a τ-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region

    Measurement of the cross-sections of the electroweak and total production of a Zγ pair in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a ZÎł pair in association with two jets. The analysis uses 140 fb−1 of LHC proton–proton collision data taken at √s = 13 TeV recorded by the ATLAS detector during the years 2015–2018. Events with a Z boson candidate decaying into either an e+e− or ÎŒ+Ό− pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and by using the information about the centrality of the system and is measured with an observed and expected significance well above five standard deviations. The fiducial pp → ZÎł jj cross-section for the electroweak production is measured to be 3.6 ± 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be 16.8+2.0 −1.8 fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Inclusive-photon production and its dependence on photon isolation in pp collisions at s√ = 13 TeV using 139 fb−1 of ATLAS data

    Get PDF
    Measurements of differential cross sections are presented for inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb−1 of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region
    • 

    corecore