22 research outputs found

    The Alkamide trans-Pellitorine Targets PPARγ via TRPV1 and TRPA1 to Reduce Lipid Accumulation in Developing 3T3-L1 Adipocytes

    Get PDF
    Adipose tissue is an important endocrine organ in the human body. However, pathological overgrowth is associated with chronic illness. Regulation of adipogenesis and maturation of adipocytes via bioactive compounds in our daily diet has been in focus of research in the past years and showed promising results for agonists of the ion channels transient receptor potential channel (TRP) V1 and A1. Here, we investigated the anti-adipogenic potential and underlying mechanisms of the alkamide trans-pellitorine present in Piper nigrum via TRPV1 and TRPA1 in 3T3-L1 cells. trans-pellitorine was found to suppress mean lipid accumulation, when applied during differentiation and maturation, but also during maturation phase solely of 3T3-L1 cells in a concentration range between 1 nM and 1 μM by up to 8.84 ± 4.97 or 7.49 ± 5.08%, respectively. Blockage of TRPV1 using the specific inhibitor trans-tert-butyl-cyclohexanol demonstrated that the anti-adipogenic activity of trans-pellitorine depends on TRPV1. In addition, blockage of the TRPA1 channel using the antagonist AP-18 showed a TRPA1-dependent signaling in the early to intermediate stages of adipogenesis. On a mechanistic level, treatment with trans-pellitorine during adipogenesis led to reduced PPARγ expression on gene and protein level via activation of TRPV1 and TRPA1, and increased expression of the microRNA mmu-let-7b, which has been associated with reduced PPARγ levels. In addition, cells treated with trans-pellitorine showed decreased expression of the gene encoding for fatty acid synthase, increased expression of microRNA-103 and a decreased short-term fatty acid uptake on the functional level. In summary, these data point to an involvement of the TRPV1 and TRPA1 cation channels in the anti-adipogenic activity of trans-pellitorine via microRNA-let7b and PPARγ. Since trans-pellitorine does not directly activate TRPV1 or TRPA1, an indirect modulation of the channel activity is assumed and warrants further investigation

    Bos d 13, a novel heat-stable beef allergen

    Get PDF
    [Scope]: Red meat, a staple food of Western diets, can also induce IgE-mediated allergic reactions. Yet, apart from the heat-labile protein serum albumin and the carbohydrate α-Gal, the molecules causing allergic reactions to red meat remain unknown.[Methods and results]: IgE reactivity profiles of beef-sensitized individuals are analyzed by IgE-immunoblotting with protein extracts from raw and cooked beef. Two IgE-reactive proteins are identified by peptide mass fingerprinting as myosinlight chain 1 (MYL1) and myosin light chain 3 (MYL3) in cooked beef extract and are designated Bos d 13 isoallergens. MYL1 and MYL3 are produced recombinantly in Escherichia coli. ELISAs proved their IgE reactivity and circular dichroism analysis showed that they represent folded molecules with remarkable thermal stability. In vitro gastrointestinal digestion experiments showed the higher stability of rMYL1 as compared to rMYL3. Exposure of a monolayer of Caco-2 cells to rMYL1 indicated that the molecule is able to cross intestinal epithelial cells without disturbing the integrity of the tight junctions, suggesting the sensitizing capacity of MYL1.[Conclusion]: MYLs are identified as novel heat-stable bovine meat allergens.This research was funded in whole by the Austrian Science Fund (FWF) P33867.Peer reviewe

    Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells

    Get PDF
    Caffeine, generally known as a stimulant of gastric acid secretion (GAS), is a bitter-tasting compound that activates several taste type 2 bitter receptors (TAS2Rs). TAS2Rs are expressed in the mouth and in several extraoral sites, e.g., in the gastrointestinal tract, in which their functional role still needs to be clarified. We hypothesized that caffeine evokes effects on GAS by activation of oral and gastric TAS2Rs and demonstrate that caffeine, when administered encapsulated, stimulates GAS, whereas oral administration of a caffeine solution delays GAS in healthy human subjects. Correlation analysis of data obtained from ingestion of the caffeine solution revealed an association between the magnitude of the GAS response and the perceived bitterness, suggesting a functional role of oral TAS2Rs in GAS. Expression of TAS2Rs, including cognate TAS2Rs for caffeine, was shown in human gastric epithelial cells of the corpus/fundus and in HGT-1 cells, a model for the study of GAS. In HGT-1 cells, various bitter compounds as well as caffeine stimulated proton secretion, whereby the caffeine-evoked effect was (i) shown to depend on one of its cognate receptor, TAS2R43, and adenylyl cyclase; and (ii) reduced by homoeriodictyol (HED), a known inhibitor of caffeine’s bitter taste. This inhibitory effect of HED on caffeine-induced GAS was verified in healthy human subjects. These findings (i) demonstrate that bitter taste receptors in the stomach and the oral cavity are involved in the regulation of GAS and (ii) suggest that bitter tastants and bitter-masking compounds could be potentially useful therapeutics to regulate gastric pH

    Biological Evaluation of Natural and Synthesized Homovanillic Acid Esters as Inhibitors of Intestinal Fatty Acid Uptake in Differentiated Caco-2 Cells

    No full text
    With raising prevalence of obesity, the regulation of human body fat is increasingly relevant. The modulation of fatty acid uptake by enterocytes represents a promising target for body weight maintenance. Recent results demonstrated that the trigeminal active compounds capsaicin, nonivamide, and trans-pellitorine dose-dependently reduce fatty acid uptake in differentiated Caco-2 cells as a model for the intestinal barrier. However, non-pungent alternatives have not been investigated and structural determinants for the modulation of intestinal fatty acid uptake have not been identified so far. Thus, based on the previous results, we synthesized 23 homovanillic acid esters in addition to the naturally occurring capsiate and screened them for their potential to reduce intestinal fatty acid uptake using the fluorescent fatty acid analog Bodipy-C12 in differentiated Caco‑2 cells as an enterocyte model. Whereas pre-incubation with 100 µM capsiate did not change fatty acid uptake by Caco-2 enterocytes, a maximum inhibition of −47% was reached using 100 µM 1‑methylpentyl-2-(4-hydroxy-3-methoxy-phenyl)acetate. Structural analysis of the 24 structural analogues tested in the present study revealed that a branched fatty acid side chain, independent of the chain length, is one of the most important structural motifs associated with inhibition of fatty acid uptake in Caco-2 enterocytes. The results of the present study may serve as an important basis for designing potent dietary inhibitors of fatty acid uptake

    Only α‐Gal bound to lipids, but not to proteins, is transported across enterocytes as an IgE‐reactive molecule that can induce effector cell activation

    No full text
    [Background]: The oligosaccharide galactose‐α‐1,3‐galactose (α‐Gal), present in mammalian proteins and lipids, causes an unusual delayed allergic reaction 3 to 6 hours after ingestion of mammalian meat in individuals with IgE antibodies against α‐Gal. To better understand the delayed onset of allergic symptoms and investigate whether protein‐bound or lipid‐bound α‐Gal causes these symptoms, we analyzed the capacity of α‐Gal conjugated proteins and lipids to cross a monolayer of intestinal cells.[Methods]: Extracts of proteins and lipids from beef were prepared, subjected to in vitro digestions, and added to Caco‐2 cells grown on permeable supports. The presence of α‐Gal in the basolateral medium was investigated by immunoblotting, thin‐layer chromatography with immunostaining and ELISA, and its allergenic activity was analyzed in a basophil activation test.[Results]: After addition of beef proteins to the apical side of Caco‐2 cells, α‐Gal containing peptides were not detected in the basolateral medium. Those peptides that crossed the Caco‐2 monolayer did not activate basophils from an α‐Gal allergic patient. Instead, when Caco‐2 cells were incubated with lipids extracted from beef, α‐Gal was detected in the basolateral medium. Furthermore, these α‐Gal lipids were able to activate the basophils of an α‐Gal allergic patient in a dose‐dependent manner.[Conclusion]: Only α‐Gal bound to lipids, but not to proteins, is able to cross the intestinal monolayer and trigger an allergic reaction. This suggests that the slower digestion and absorption of lipids might be responsible for the unusual delayed allergic reactions in α‐Gal allergic patients and identifies glycolipids as potential allergenic molecules.This study was funded by research grant P25868 of the Austrian Science Fund (FWF).Peer reviewe

    The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells

    No full text
    Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by -48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by -57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1.status: publishe

    Long-Term Consumption of a Sugar-Sweetened Soft Drink in Combination with a Western-Type Diet Is Associated with Morphological and Molecular Changes of Taste Markers Independent of Body Weight Development in Mice

    No full text
    We investigated whether the long-term intake of a typical sugar-sweetened soft drink (sugar-sweetened beverage, SSB) alters markers for taste function when combined with a standard diet (chow) or a model chow mimicking a Western diet (WD). Adult male CD1 mice had ad libitum access to tap water or SSB in combination with either the chow or the WD for 24 weeks. Energy intake from fluid and food was monitored three times a week. Cardiometabolic markers (body weight and composition, waist circumference, glucose and lipid profile, and blood pressure) were analyzed at the end of the intervention, as was the number and size of the fungiform papillae as well as mRNA levels of genes associated with the different cell types of taste buds and taste receptors in the circumvallate papillae using a cDNA microarray and qPCR. Although the overall energy intake was higher in the WD groups, there was no difference in body weight or other cardiometabolic markers between the SSB and water groups. The chemosensory surface from the fungiform papillae was reduced by 36 ± 19% (p < 0.05) in the WD group after SSB compared to water intake. In conclusion, the consumption of the SSB reduced the chemosensory surface of the fungiform papillae of CD1 mice when applied in combination with a WD independent of body weight. The data suggest synergistic effects of a high sugar-high fat diet on taste dysfunction, which could further influence food intake and promote a vicious cycle of overeating and taste dysfunction

    Noncaloric Sweeteners Induce Peripheral Serotonin Secretion via the T1R3-Dependent Pathway in Human Gastric Parietal Tumor Cells (HGT-1)

    No full text
    The role of sweet taste in energy intake and satiety regulation is still controversial. Noncaloric artificial sweeteners (NCSs) are thought to help reduce energy intake, although little is known about their impact on the satiating neurotransmitter serotonin (5-HT). In the gastrointestinal (GI) tract, 5-HT regulates gastric acid secretion and gastric motility, both part of the complex network of mechanisms regulating food intake and satiety. This study demonstrated a stimulating impact compared to controls (100%) on 5-HT release in human gastric tumor cells (HGT-1) by the NCSs cyclamate (50 mM, 157% ± 6.3%), acesulfame potassium (Ace K, 50 mM, 197% ± 8.6%), saccharin (50 mM, 147% ± 6.7%), sucralose (50 mM, 194% ± 11%), and neohesperidin dihydrochalcone (NHDC, 1 mM, 201% ± 13%). Although these effects were not associated with the sweet taste intensity of the NCSs tested, involvement of the sweet receptor subunit T1R3 in the NCS-evoked response was demonstrated by mRNA expression of <i>TAS1R3</i>, co-incubation experiments using the T1R3 receptor antagonist lactisole, and a <i>TAS1R3</i> siRNA knockdown approach. Analysis of the downstream signaling revealed activation of the cAMP/ERK/Ca<sup>2+</sup> cascade. Co-treatment experiments with 10 mM glucose enhanced the 5-HT release induced by cyclamate, Ace K, saccharin, and sucralose, thereby supporting the enhancing effect of glucose on a NCS-mediated response. Overall, the results obtained identify NCSs as potent inducers of 5-HT release via T1R3 in human gastric parietal cells in culture and warrant <i>in vivo</i> studies to demonstrate their efficacy

    The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells - Fig 4

    No full text
    <p>A, B: Extracellular serotonin levels of differentiated Caco-2 cells after stimulation with 500 mM D-(+)-glucose (A) or 100 μM HED sodium salt (B) with or without addition of 5–500 μM phloridzin. Krebs-Ringer buffer without, or in case of incubations using phloridzin, with addition of 0.1% EtOH was used as control and set to 100%. An effect of 0.1% EtOH was excluded in preliminary studies. Statistics (A, B): <i>n</i> = 3 with two technical replicates. Significant differences between the treatments were assessed using one-way ANOVA with Holm-Sidak <i>post hoc</i> test and are marked by n.s. (not significant), whereas significant differences to the controls are marked with * <i>p</i> <0.05, ** <i>p</i> <0.01, *** <i>p</i> <0.001 <i>vs</i>. the corresponding control (incubations using phloridzin were tested in comparison to the EtOH control, treatments with glucose or HED sodium alone were tested in comparison to the incubation media control).</p
    corecore