454 research outputs found

    Joint non-rigid image registration and reconstruction for quantitative atomic resolution scanning transmission electron microscopy

    Full text link
    Aberration corrected scanning transmission electron microscopes (STEM) enable to determine local strain fields, composition and bonding states at atomic resolution. The precision to locate atomic columns is often obstructed by scan artifacts limiting the quantitative interpretation of STEM datasets. Here, a novel bias-corrected non-rigid registration approach is presented that compensates for fast and slow scan artifacts in STEM image series. The bias-correction is responsible for the correction of the slow scan artifacts and based on a explicit coupling of the deformations of the individual images in a series via a minimization of the average deformation. This allows to reduce fast scan noise in an image series and slow scan distortions simultaneously. The novel approach is tested on synthetic and experimental images and its implication on atomic resolution strain and elemental mapping is discussed

    Incompatibility of a comoving Ly-alpha forest with supernova-Ia luminosity distances

    Full text link
    Recently Perlmutter et al. suggested a positive value of Einstein's cosmological constant Lambda on the basis of luminosity distances from type-Ia supernovae. However, Lambda world models had earlier been proposed by Hoell & Priester and Liebscher et al. on the basis of quasar absorption-line data. Employing more general repulsive fluids ("dark energy") encompassing the Lambda component we quantitatively compare both approaches with each other. Fitting the SN-data by a minimum-component model consisting of dark energy + dust yields a closed universe with a large amount of dust exceeding the baryonic content constrained by big-bang nucleosynthesis. The nature of the dark energy is hardly constrained. Only when enforcing a flat universe there is a clear tendency to a dark-energy Lambda fluid and the `canonical' value Omega_M = 0.3 for dust. Conversely, fitting the quasar-data by a minimum-component model yields a sharply defined, slightly closed model with a low dust density ruling out significant pressureless dark matter. The dark-energy component obtains an equation-of-state P = -0.96 epsilon close to that of a Lambda-fluid. Omega_M = 0.3 or a precisely flat spatial geometry are inconsistent with minimum-component models. It is found that quasar and supernova data sets cannot be reconciled with each other via (repulsive ideal fluid+dust+radiation)-world models. Compatibility could be reached by drastic expansion of the parameter space with at least two exotic fluids added to dust and radiation as world constituents. If considering such solutions as far-fetched one has to conclude that the quasar absorption line and the SN-Ia constraints are incompatible.Comment: 8 pages, 4 figures, latex, accepted for publication in A&

    Structure and hardness of in situ synthesized nano-oxide strengthened CoCrFeNi high entropy alloy thin films

    Get PDF
    In this study, we report on face-centered cubic structured CoCrFeNi high-entropy alloy thin films with finely dispersed nano-oxide particles which are formed by internal oxidation. Analytical scanning transmission electron microscopy imaging found that the particles are Cr2O3. The oxide particles contribute to the hardening of the film increasing its hardness by 14% compared to that of the film without precipitates, through the Orowan-type strengthening mechanism. Our novel approach paves the way to design medium- and high-entropy alloys with high strength by making use of oxide phases

    Automatic Identification of Crystal Structures and Interfaces via Artificial-Intelligence-based Electron Microscopy

    Full text link
    Characterizing crystal structures and interfaces down to the atomic level is an important step for designing advanced materials. Modern electron microscopy routinely achieves atomic resolution and is capable to resolve complex arrangements of atoms with picometer precision. Here, we present AI-STEM, an automatic, artificial-intelligence based method, for accurately identifying key characteristics from atomic-resolution scanning transmission electron microscopy (STEM) images of polycrystalline materials. The method is based on a Bayesian convolutional neural network (BNN) that is trained only on simulated images. AI-STEM automatically and accurately identifies crystal structure, lattice orientation, and location of interface regions in synthetic and experimental images. The model is trained on cubic and hexagonal crystal structures, yielding classifications and uncertainty estimates, while no explicit information on structural patterns at the interfaces is included during training. This work combines principles from probabilistic modeling, deep learning, and information theory, enabling automatic analysis of experimental, atomic-resolution images.Comment: Code (https://github.com/AndreasLeitherer/ai4stem) and data (https://doi.org/10.5281/zenodo.7756516) are available for public use. The manuscript contains 32 pages (10 pages main text, 15 pages for Methods & References & 5 Figures & 1 Table, as well as 7 pages Supplementary Information), including 5 main figures and 6 supplementary figure

    Stable Nanofacets in [111] Tilt Grain Boundaries of Face-Centered Cubic Metals

    Full text link
    Grain boundaries can dissociate into facets if that reduces their excess energy. This, however, introduces line defects at the facet junctions, which present a driving force to grow the facets in order to reduce the total number of junctions and thus the system's energy. Often, micrometer-sized facet lengths are observed and facet growth only arrests for kinetic reasons. So far, energetically stable, finite-sized facets have not been observed, even though theoretical stability conditions have already been proposed. Here, we show a case where nanometer-sized facets are indeed stable compared to longer facets in [111] tilt grain boundaries in Cu by atomistic simulation and transmission electron microscopy. The facet junctions lack a Burgers vector component, which is unusual, but which leads to attractive interactions via line forces. Atomistic simulations predict that the same phenomenon also occurs in at least Al and Ag

    Atomic resolution observations of silver segregation in a [111] tilt grain boundary in copper

    Full text link
    Alloying a material and hence segregating solutes to grain boundaries is one way to tailor a material to the demands of its application. Direct observation of solute segregation is necessary to understand how the interfacial properties are altered. In this study, we investigate the atomic structure of a high angle grain boundary both in pure copper and upon silver segregation by aberration-corrected scanning transmission electron microscopy and spectroscopy. We further correlate the experiments to atomistic simulations to quantify the local solute excess and its impact on grain boundary properties. We observe that the grain boundary structure remains intact upon silver segregation and up to five different positions within a structural unit serve as segregation sites. By combining the atomic resolution observation with atomistic modelling, we are able to quantify the local silver concentration and elucidate the underlying segregation mechanism

    Discharge data from 50 selected rivers for GCM validation

    No full text

    The Electrostatics of Einstein's Unified Field Theory

    Full text link
    When sources are added at their right-hand sides, and g_{(ik)} is a priori assumed to be the metric, the equations of Einstein's Hermitian theory of relativity were shown to allow for an exact solution that describes the general electrostatic field of n point charges. Moreover, the injunction of spherical symmetry of g_{(ik)} in the infinitesimal neighbourhood of each of the charges was proved to yield the equilibrium conditions of the n charges in keeping with ordinary electrostatics. The tensor g_{(ik)}, however, cannot be the metric of the theory, since it enters neither the eikonal equation nor the equation of motion of uncharged test particles. A physically correct metric that rules both the behaviour of wave fronts and of uncharged matter is the one indicated by H\'ely. In the present paper it is shown how the electrostatic solution predicts the structure of the n charged particles and their mutual positions of electrostatic equilibrium when H\'ely's physically correct metric is adopted.Comment: 15 pages. Misprints corrected. To appear in General Relativity and Gravitatio

    Atomic motifs govern the decoration of grain boundaries by interstitial solutes

    Full text link
    Grain boundaries, the two-dimensional (2D) defects between differently oriented crystals, control mechanical and transport properties of materials. Our fundamental understanding of grain boundaries is still incomplete even after nearly a century and a half of research since Sorby first imaged grains. Here, we present a systematic study, over 9 orders of magnitude of size scales, in which we analyze 2D defects between two neighboring crystals across five hierarchy levels and investigate their crystallographic, compositional, and electronic features. The levels are (a) the macroscale interface alignment and grain misorientation (held constant here); (b) the systematic mesoscopic change in the inclination of the grain boundary plane for the same orientation difference; (c) the facets, atomic motifs (structural units), and internal nanoscopic defects within the boundary plane; (d) the grain boundary chemistry; and (e) the electronic structure of the atomic motifs. As a model material, we use Fe alloyed with B and C, exploiting the strong interdependence of interface structure and chemistry in this system. This model system is the basis of the 1.9 billion tons of steel produced annually and has an eminent role as a catalyst. Surprisingly, we find that even a change in the inclination of the GB plane with identical misorientation impacts GB composition and atomic arrangement. Thus, it is the smallest structural hierarchical level, the atomic motifs, which control the most important chemical properties of the grain boundaries. This finding not only closes a missing link between the structure and chemical composition of such defects but also enables the targeted design and passivation of the chemical state of grain boundaries to free them from their role as entry gates for corrosion, hydrogen embrittlement, or mechanical failure
    • …
    corecore