94 research outputs found

    Differentiation of the brain vasculature: the answer came blowing by the Wnt

    Get PDF
    Vascularization of the vertebrate brain takes place during embryonic development from a preformed perineural vascular plexus. As a consequence of the intimate contact with neuroectodermal cells the vessels, which are entering the brain exclusively via sprouting angiogenesis, acquire and maintain unique barrier properties known as the blood-brain barrier (BBB). The endothelial BBB depends upon the close association of endothelial cells with pericytes, astrocytes, neurons and microglia, which are summarized in the term neuro-vascular unit. Although it is known since decades that the CNS tissue provides the cues for BBB induction and differentiation in endothelial cells, the molecular mechanism remained obscure

    Novel insights into the development and maintenance of the blood-brain barrier

    Get PDF
    The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β−catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium

    β-Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse

    Get PDF
    During heart development endocardial cells within the atrio-ventricular (AV) region undergo TGFβ-dependent epithelial-mesenchymal transformation (EMT) and invade the underlying cardiac jelly. This process gives rise to the endocardial cushions from which AV valves and part of the septum originate. In this paper we show that in mouse embryos and in AV explants TGFβ induction of endocardial EMT is strongly inhibited in mice deficient for endothelial β-catenin, leading to a lack of heart cushion formation. Using a Wnt-signaling reporter mouse strain, we demonstrated in vivo and ex vivo that EMT in heart cushion is accompanied by activation of β-catenin/TCF/Lef transcriptional activity. In cultured endothelial cells, TGFβ2 induces α-smooth muscle actin (αSMA) expression. This process was strongly reduced in β-catenin null cells, although TGFβ2 induced smad phosphorylation was unchanged. These data demonstrate an involvement of β-catenin/TCF/Lef transcriptional activity in heart cushion formation, and suggest an interaction between TGFβ and Wnt-signaling pathways in the induction of endothelial-mesenchymal transformation

    Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus

    Get PDF
    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C

    Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression

    Get PDF
    Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood–brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium. Enforced endothelial β-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/β-catenin–Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that β-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/β-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy

    Wnt/beta-catenin signaling controls development of the blood–brain barrier

    Get PDF
    The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/beta-catenin (beta-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of beta-cat in vivo enhances barrier maturation, whereas inactivation of beta-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of beta-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of beta-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of beta-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown

    Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties

    Get PDF
    2,3-Dialdehyde cellulose (DAC) of a high degree of oxidation (92% relative to AGU units) prepared by oxidation of microcrystalline cellulose with sodium periodate (48 degrees C, 19 h) is soluble in hot water. Solution casting, slow air drying, hot pressing, and reinforcement by cellulose nanocrystals afforded films (similar to 100 mu m thickness) that feature intriguing properties: they have very smooth surfaces (SEM), are highly flexible, and have good light transmittance for both the visible and near-infrared range (89-91%), high tensile strength (81-122 MPa), and modulus of elasticity (3.4-4.0 GPa) depending on hydration state and respective water content. The extraordinarily low oxygen permeation ofPeer reviewe

    Caveolin-1 opens endothelial cell junctions by targeting catenins

    Get PDF
    Aims A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown. Methods and results Impedance spectroscopy, biochemistry, and morphology were used to investigate the role of caveolin-1 in the regulation of thrombin-induced opening of cell junctions in cultured human and mouse endothelial cells. Here, we demonstrate that the vascular endothelial (VE) cadherin/catenin complex targets caveolin-1 to endothelial cell junctions. Association of caveolin-1 with VE-cadherin/catenin complexes is essential for the barrier function decrease in response to the pro-inflammatory mediator thrombin, which causes a reorganization of the complex in a rope ladder-like pattern accompanied by a loss of junction-associated actin filaments. Mechanistically, we show that in response to thrombin stimulation the protease-activated receptor 1 (PAR-1) causes phosphorylation of caveolin-1, which increasingly associates with β- and γ-catenin. Consequently, the association of β- and γ-catenin with VE-cadherin is weakened, thus allowing junction reorganization and a decrease in barrier function. Thrombin-induced opening of cell junctions is lost in caveolin-1-knockout endothelial cells and after expression of a Y/F-caveolin-1 mutant but is completely reconstituted after expression of wild-type caveolin-1. Conclusion Our results highlight the pivotal role of caveolin-1 in VE-cadherin-mediated cell adhesion via catenins and, in turn, in barrier function regulatio

    The conditional inactivation of the β-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility

    Get PDF
    Using the Cre/loxP system we conditionally inactivated β-catenin in endothelial cells. We found that early phases of vasculogenesis and angiogenesis were not affected in mutant embryos; however, vascular patterning in the head, vitelline, umbilical vessels, and the placenta was altered. In addition, in many regions, the vascular lumen was irregular with the formation of lacunae at bifurcations, vessels were frequently hemorrhagic, and fluid extravasation in the pericardial cavity was observed. Cultured β-catenin −/− endothelial cells showed a different organization of intercellular junctions with a decrease in α-catenin in favor of desmoplakin and marked changes in actin cytoskeleton. These changes paralleled a decrease in cell–cell adhesion strength and an increase in paracellular permeability. We conclude that in vivo, the absence of β-catenin significantly reduces the capacity of endothelial cells to maintain intercellular contacts. This may become more marked when the vessels are exposed to high or turbulent flow, such as at bifurcations or in the beating heart, leading to fluid leakage or hemorrhages

    Wnt/β-catenin signaling controls development of the blood–brain barrier

    Get PDF
    The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown
    corecore