475 research outputs found

    Non-Invasive Measurement of Frog Skin Reflectivity in High Spatial Resolution Using a Dual Hyperspectral Approach

    Get PDF
    Background:Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range.Methodology/Principal Findings:We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum.Conclusion/Significance:Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult. © 2013 Pinto et al

    Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes

    Full text link
    We present the first experimental study that maps the transformation of nuclear quadrupole resonances from the pure nuclear quadrupole regime to the quadrupole-perturbed Zeeman regime. The transformation presents an interesting quantum-mechanical problem, since the quantization axis changes from being aligned along the axis of the electric-field gradient tensor to being aligned along the magnetic field. We achieve large nuclear quadrupole shifts for I = 3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When the magnetic and quadrupolar interactions are of comparable size, perturbation theory is not suitable for calculating the transition energies. Rather than use perturbation theory, we compare our data to theoretical calculations using a Liouvillian approach and find excellent agreement.Comment: 4 pages, 4 figure

    Ultracold chemical reactions of a single Rydberg atom in a dense gas

    Full text link
    Within a dense environment (ρ1014\rho \approx 10^{14}\,atoms/cm3^3) at ultracold temperatures (T<1μKT < 1\,\mu{}\text{K}), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nSnS 87^{87}Rb Rydberg states and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum ll, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n100n\approx 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ4.8×1014cm3\rho\approx4.8\times 10^{14}\,\text{cm}^{-3}), the lifetime of a Rydberg atom exceeds 10μs10\,\mu\text{s} at n>140n > 140 compared to 1μs1\,\mu\text{s} at n=90n=90. In addition, a second observed reaction mechanism, namely Rb2+_2^+ molecule formation, was studied. Both reaction products are equally probable for n=40n=40 but the fraction of Rb2+_2^+ created drops to below 10\,% for n90n\ge90.Comment: 13 pages, 13 figure

    Tumor-Specific Hsp70 Plasma Membrane Localization Is Enabled by the Glycosphingolipid Gb3

    Get PDF
    Human tumors differ from normal tissues in their capacity to present Hsp70, the major stress-inducible member of the HSP70 family, on their plasma membrane. Membrane Hsp70 has been found to serve as a prognostic indicator of overall patient survival in leukemia, lower rectal and non small cell lung carcinomas. Why tumors, but not normal cells, present Hsp70 on their cell surface and the impact of membrane Hsp70 on cancer progression remains to be elucidated.Although Hsp70 has been reported to be associated with cholesterol rich microdomains (CRMs), the partner in the plasma membrane with which Hsp70 interacts has yet to be identified. Herein, global lipid profiling demonstrates that Hsp70 membrane-positive tumors differ from their membrane-negative counterparts by containing significantly higher amounts of globotriaoslyceramide (Gb3), but not of other lipids such as lactosylceramide (LacCer), dodecasaccharideceramide (DoCer), galactosylceramide (GalCer), ceramide (Cer), or the ganglioside GM1. Apart from germinal center B cells, normal tissues are Gb3 membrane-negative. Co-localization of Hsp70 and Gb3 was selectively determined in Gb3 membrane-positive tumor cells, and these cells were also shown to bind soluble Hsp70-FITC protein from outside in a concentration-dependent manner. Given that the latter interaction can be blocked by a Gb3-specific antibody, and that the depletion of globotriaosides from tumors reduces the amount of membrane-bound Hsp70, we propose that Gb3 is a binding partner for Hsp70. The in vitro finding that Hsp70 predominantly binds to artificial liposomes containing Gb3 (PC/SM/Chol/Gb3, 17/45/33/5) confirms that Gb3 is an interaction partner for Hsp70.These data indicate that the presence of Gb3 enables anchorage of Hsp70 in the plasma membrane of tumors and thus they might explain tumor-specific membrane localization of Hsp70

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in <it>SFTPC</it>, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects.</p> <p>Methods</p> <p>SP-C<sup>A116D </sup>was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide.</p> <p>Results</p> <p>Stable expression of SP-C<sup>A116D </sup>in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-C<sup>A116D </sup>expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-C<sup>A116D </sup>cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4<sup>+ </sup>lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-C<sup>A116D </sup>on neighboring cells in the alveolar space.</p> <p>Conclusions</p> <p>We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP-C deficiency associated ILD and provide insight into the mechanisms by which drugs currently used in ILD therapy act.</p

    Insulin-inducible THRSP maintains mitochondrial function and regulates sphingolipid metabolism in human adipocytes

    Get PDF
    Background Thyroid hormone responsive protein (THRSP) is a lipogenic nuclear protein that is highly expressed in murine adipose tissue, but its role in humans remains unknown. Methods We characterized the insulin regulation of THRSP in vivo in human adipose tissue biopsies and in vitro in Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. To this end, we measured whole-body insulin sensitivity using the euglycemic insulin clamp technique in 36 subjects [age 40 +/- 9 years, body mass index (BMI) 27.3 +/- 5.0 kg/m(2)]. Adipose tissue biopsies were obtained at baseline and after 180 and 360 min of euglycemic hyperinsulinemia for measurement of THRSP mRNA concentrations. To identify functions affected by THRSP, we performed a transcriptomic analysis of THRSP-silenced SGBS adipocytes. Mitochondrial function was assessed by measuring mitochondrial respiration as well as oxidation and uptake of radiolabeled oleate and glucose. Lipid composition in THRSP silencing was studied by lipidomic analysis. Results We found insulin to increase THRSP mRNA expression 5- and 8-fold after 180 and 360 min of in vivo euglycemic hyperinsulinemia. This induction was impaired in insulin-resistant subjects, and THRSP expression was closely correlated with whole-body insulin sensitivity. In vitro, insulin increased both THRSP mRNA and protein concentrations in SGBS adipocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. A transcriptomic analysis of THRSP-silenced adipocytes showed alterations in mitochondrial functions and pathways of lipid metabolism, which were corroborated by significantly impaired mitochondrial respiration and fatty acid oxidation. A lipidomic analysis revealed decreased hexosylceramide concentrations, supported by the transcript concentrations of enzymes regulating sphingolipid metabolism. Conclusions THRSP is regulated by insulin both in vivo in human adipose tissue and in vitro in adipocytes, and its expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty acid oxidation, its downregulation in human adipose tissue could contribute to mitochondrial dysfunction. Furthermore, disturbed sphingolipid metabolism could add to metabolic dysfunction in obese adipose tissue.Peer reviewe
    corecore