11,674 research outputs found
Air pollution monitoring instrumentation A survey
Air pollution monitoring instrumentation developed for aerospace uses surveyed for industrial application
Semi-Automated SVG Programming via Direct Manipulation
Direct manipulation interfaces provide intuitive and interactive features to
a broad range of users, but they often exhibit two limitations: the built-in
features cannot possibly cover all use cases, and the internal representation
of the content is not readily exposed. We believe that if direct manipulation
interfaces were to (a) use general-purpose programs as the representation
format, and (b) expose those programs to the user, then experts could customize
these systems in powerful new ways and non-experts could enjoy some of the
benefits of programmable systems.
In recent work, we presented a prototype SVG editor called Sketch-n-Sketch
that offered a step towards this vision. In that system, the user wrote a
program in a general-purpose lambda-calculus to generate a graphic design and
could then directly manipulate the output to indirectly change design
parameters (i.e. constant literals) in the program in real-time during the
manipulation. Unfortunately, the burden of programming the desired
relationships rested entirely on the user.
In this paper, we design and implement new features for Sketch-n-Sketch that
assist in the programming process itself. Like typical direct manipulation
systems, our extended Sketch-n-Sketch now provides GUI-based tools for drawing
shapes, relating shapes to each other, and grouping shapes together. Unlike
typical systems, however, each tool carries out the user's intention by
transforming their general-purpose program. This novel, semi-automated
programming workflow allows the user to rapidly create high-level, reusable
abstractions in the program while at the same time retaining direct
manipulation capabilities. In future work, our approach may be extended with
more graphic design features or realized for other application domains.Comment: In 29th ACM User Interface Software and Technology Symposium (UIST
2016
Physical and geometric constraints explain the labyrinth-like shape of the nasal cavity
The nasal cavity is a vital component of the respiratory system that heats
and humidifies inhaled air in all vertebrates. Despite this common function,
the shapes of nasal cavities vary widely across animals. To understand this
variability, we here connect nasal geometry to its function by theoretically
studying the airflow and the associated scalar exchange that describes heating
and humidification. We find that optimal geometries, which have minimal
resistance for a given exchange efficiency, have a constant gap width between
their side walls, but their overall shape is restricted only by the geometry of
the head. Our theory explains the geometric variations of natural nasal
cavities quantitatively and we hypothesize that the trade-off between high
exchange efficiency and low resistance to airflow is the main driving force
shaping the nasal cavity. Our model further explains why humans, whose nasal
cavities evolved to be smaller than expected for their size, become obligate
oral breathers in aerobically challenging situations.Comment: 7 pages, 4 figure
Algal culture studies for CELSS
Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities
Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground
Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass
Speech Analysis
Contains research objectives and reports on one research project.National Science Foundatio
Electron heating mechanisms in dual frequency capacitive discharges
We discuss electron heating mechanisms in the sheath regions of dual-frequency capacitive discharges, with the twin aims of identifying the dominant mechanisms and supplying closed-form expressions from which the heating power can be estimated. We show that the heating effect produced by either Ohmic or collisionless heating is much larger when the discharge is excited by a superposition of currents at two frequencies than if either current had acted alone. This coupling effect occurs because the lower frequency current, while not directly heating the electrons to any great extent, strongly affects the spatial structure of the discharge in the sheath regions
Evolutionary Dynamics on Small-Order Graphs
Abstract. We study the stochastic birth-death model for structured finite populations popularized by Lieberman et al. [Lieberman, E., Hauert, C., Nowak, M.A., 2005. Evolutionary dynamics on graphs. Nature 433, 312-316]. We consider all possible connected undirected graphs of orders three through eight. For each graph, using the Monte Carlo Markov Chain simulations, we determine the fixation probability of a mutant introduced at every possible vertex. We show that the fixation probability depends on the vertex and on the graph. A randomly placed mutant has the highest chances of fixation in a star graph, closely followed by star-like graphs. The fixation probability was lowest for regular and almost regular graphs. We also find that within a fixed graph, the fixation probability of a mutant has a negative correlation with the degree of the starting vertex. 1
A remark on an overdetermined problem in Riemannian Geometry
Let be a Riemannian manifold with a distinguished point and
assume that the geodesic distance from is an isoparametric function.
Let be a bounded domain, with , and consider
the problem in with on ,
where is the -Laplacian of . We prove that if the normal
derivative of along the boundary of is a
function of satisfying suitable conditions, then must be a
geodesic ball. In particular, our result applies to open balls of
equipped with a rotationally symmetric metric of the form
, where is the standard metric of the sphere.Comment: 8 pages. This paper has been written for possible publication in a
special volume dedicated to the conference "Geometric Properties for
Parabolic and Elliptic PDE's. 4th Italian-Japanese Workshop", organized in
Palinuro in May 201
Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy
Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGF beta 1 and PGC-1 alpha were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3: BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments
- …
