7,959 research outputs found

    Shock Diffraction by Convex Cornered Wedges for the Nonlinear Wave System

    Full text link
    We are concerned with rigorous mathematical analysis of shock diffraction by two-dimensional convex cornered wedges in compressible fluid flow governed by the nonlinear wave system. This shock diffraction problem can be formulated as a boundary value problem for second-order nonlinear partial differential equations of mixed elliptic-hyperbolic type in an unbounded domain. It can be further reformulated as a free boundary problem for nonlinear degenerate elliptic equations of second order. We establish a first global theory of existence and regularity for this shock diffraction problem. In particular, we establish that the optimal regularity for the solution is C0,1C^{0,1} across the degenerate sonic boundary. To achieve this, we develop several mathematical ideas and techniques, which are also useful for other related problems involving similar analytical difficulties.Comment: 50 pages;7 figure

    Unlimited simultaneous discrimination intervals in regression Technical report no. 90

    Get PDF
    Unlimited simultaneous discrimination intervals in linear regression

    The Big Paper Network Supporting Doctoral Students to Degree Completion

    Get PDF
    Doctoral completion rates are a concern across disciplines.  This paper describes the way in which Curriculum Leadership faculty redesigned their doctoral program from coursework through completion to include a strong support system, intellectually and emotionally.  This culminated in the creation of the “Big Paper Network,” designed to support candidates from proposal writing through defense

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure

    Non-adiabatic pumping in an oscillating-piston model

    Full text link
    We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase-space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.Comment: 6 pages, 4 figures, improved versio

    Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations II

    Full text link
    Consider axisymmetric strong solutions of the incompressible Navier-Stokes equations in R3\R^3 with non-trivial swirl. Let zz denote the axis of symmetry and rr measure the distance to the z-axis. Suppose the solution satisfies either v(x,t)Ct1/2|v (x,t)| \le C_*{|t|^{-1/2}} or, for some \e > 0, v(x,t)Cr1+ϵtϵ/2|v (x,t)| \le C_* r^{-1+\epsilon} |t|^{-\epsilon /2} for T0t<0-T_0\le t < 0 and 0<C<0<C_*<\infty allowed to be large. We prove that vv is regular at time zero.Comment: More explanations and a new appendi

    Jet fuel property changes and their effect on producibility and cost in the U.S., Canada, and Europe

    Get PDF
    The effects of changes in properties and blending stocks on the refinery output and cost of jet fuel in the U.S., Canada, and Europe were determined. Computerized refinery models that minimize production costs and incorporated a 1981 cost structure and supply/demand projections to the year 2010 were used. Except in the West U.S., no changes in jet fuel properties were required to meet all projected demands, even allowing for deteriorating crude qualities and changes in competing product demand. In the West U.S., property changes or the use of cracked blendstocks were projected to be required after 1990 to meet expected demand. Generally, relaxation of aromatics and freezing point, or the use of cracked stocks produced similar results, i.e., jet fuel output could be increased by up to a factor of three or its production cost lowered by up to $10/cu m. High quality hydrocracked stocks are now used on a limited basis to produce jet fuel. The conversion of U.S. and NATO military forces from wide-cut to kerosene-based jet fuel is addressed. This conversion resulted in increased costs of several hundred million dollars annually. These costs can be reduced by relaxing kerosene jet fuel properties, using cracked stocks and/or considering the greater volumetric energy content of kerosene jet fuel

    Auger de-excitation of metastable molecules at metallic surfaces

    Full text link
    We study secondary electron emission from metallic surfaces due to Auger de-excitation of diatomic metastable molecules. Our approach is based on an effective model for the two active electrons involved in the process -- a molecular electron described by a linear combination of atomic orbitals when it is bound and a two-center Coulomb wave when it is not and a metal electron described by the eigenfunctions of a step potential -- and employs Keldysh Green's functions. Solving the Dyson equation for the retarded Green's function by exponential resummation we are able to treat time-nonlocal self-energies and to avoid the wide-band approximation.Results are presented for the de-excitation of \NitrogenDominantMetastableState\ on aluminum and tungsten and discussed in view of previous experimental and theoretical investigations. We find quantitative agreement with experimental data for tungsten indicating that the effective model captures the physics of the process quite well. For aluminum we predict secondary electron emission due to Auger de-excitation to be one to two orders of magnitude smaller than the one found for resonant charge-transfer and subsequent auto-detachment.Comment: 15 pages, 9 figures, revised version using an improved single-electron basi

    Electron heating by sheaths in radio frequency discharges

    Full text link
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
    corecore