

UNLIMITED SIMULTANEOUS DISCRIMINATION INIERVALS IN REGRESSION by

G.. J. Lieberman, R. G. Miller, Jr., and M. A. Hamilton

TECHNICAL REPORT NO. 90
July 29, 1966

Supported by the Army, Navy, Air Force, and NASA under Contract Nonr-225(53) (NR-042-002) with the Office of Naval Research

Gerald J. Lieberman, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

STANFORD, CALIFORNIA

BLANK PAGE

UNLIMITED SIMULTANIOUS DISCRIMINATION INTERVALS IN REGRESSION

by
G. J. Lieberman, R. G. Miller, Jr., and M. A. Hamilton
I. Introduction

In a recent paper [2] Lieberman and Miller considered the problem of obtaining simultaneous tolerance intervals in regression. Such intervals are easily described for the simple linear regression model $E(Y)=$ $\alpha+\beta x$. Tolerance intervals $\left[L_{x}(P), U_{x}(P)\right]$ were found which are based upon the same estimated linear regression and which have the property that with confidence $1-\alpha$ the interval $\left[L_{x}(P), U_{x}(P)\right]$ contains 100P percent of the normal distribution centered at $\alpha+\beta x$ for any x and any P. In terms of predictions, a future value of Y at level x of the independent variable will lie in $\left[L_{x}(P), U_{x}(P)\right]$ with probability at least P with confidence $l-\alpha$ for any x and any P. The proper interpretation of this probability statement is that the "confidence $1-\alpha^{\prime \prime}$ refers to the sample from which the regression line is estimated and the "probability at least P " to the sampling distribution of future observations. If for a single regression line one asserts that the proportion of future observations falling within the given tolerance limits (for any x) is at least F, and similar statements are made repeatedly for different regression lines, then for $100(1-\alpha)$ percent of the different regression lines the statements will be correct.

Simultaneous tolerance intervals have a different interpretation than that given for prediction intervals. Lieberman[l] treated the problem of determining the joint prediction intervals for the future
values of Y at each of K (known) separate settings of the independent variable x, when all K predictions are based upon the original fitted regression line. A probability statement concerning this joint prediction interval containing the K future values of Y was given. An experimenter is sometimes interested in joint prefiction intervals, and sometimes interested in simultaneous tolerance intervals. When the number K or prediction intervals is large, the resultant intervals may be useless. In other cases, the number K may be unknown so that the prediction intervals may not be applicable. For these cases, as well as those situations when the experimenter actually wants a tolerance interval instead of a prediction interval, simultaneous tolerance intervals may be useful.

Both prediction intervals and simultaneous tolerance intervals, pertain to statements concerning future values of Y 's for given x 's. The reverse problem of making statements about the x 's from which the observed future Y 's were obtained is often referred to as the problem of discrimination. The discrimination problem is described as follows: The statistician has n pairs of values $\left(x_{1}, Y_{1}\right)\left(x_{2}, Y_{2}\right), \ldots,\left(x_{n}, Y_{n}\right)$ from which he estimates the regression line $\alpha+8 x$. He now observes K additional observations $Y_{1}^{*}, Y_{2}^{*}, \ldots, Y_{K}^{*}$ for which the corresponding independent variable values $x_{1}^{*}, x_{2}^{*}, \ldots, x_{K}^{*}$ are unknown. The statis. tician wishes to estimate these values of \mathbf{x} and bracket them by means of simultaneous confidence intervals. This problen was first treated by Mandel [4], and another solution was given in Miller [5].

The analogous situation arises for discrimination problems that motivated the construction of simultaneous tolerance intervals instead of joint prediction intervals. Again, from the sample data, a regression
line $a+b x$ may be constructed, but the number K of discriminations to be made from it may be unknown. Even when K is known, it may be so large that the resultant intervals may be too wide. This problem will be referred to as finding unlimited simultaneous discrimination intervals in regression.
 are sought which are based upon the same estimated linear regression and which have the property that at least 100 P percent of the discrimination intervals will contain the true $x^{\prime} s$ with confidence $1-\alpha$. Thus if for a single regression line one asserts that at least 100P percent of the discrimination intervals will contain the correct x 's, and similar statements are made repeatedly for different regression lines, then for $100(1-\alpha)$ percent of the different regression lines the statements will be correct. For the other fraction (1000 percent) the per centage of discrimination intervals enclosing their true x 's may be greater or less than 100P percent for each line.

The use of unlimited simultaneous discrimination intervals is particularly important in bioassay where a standard curve is constructed on which all future assays (discriminations) are to be run. This is similar to the problem of calibrating a measuring instrument where the estimated calibration line is used to correct future readings taken with the instrument. The calibration problem frequently arises in the physical sciences and engineering.

An example of a bioassay to which unlimited simultaneous discrimination techniques could be applied is an assay for immunoglobulins in human sera. Human serum contains three known antibodies (eama globulins):
γ_{A}, γ_{G}, and $\gamma_{M^{\prime}}$ These are routinely assayed in a number of laboratories by the method of radial immunodiffusion.

A radial immunodiffusion assay is performed as follows. An agar plate is prepared with a gel surface containing antiserum to the immonoglobulin to be assayed. Holes or wells are punched into the agar gel. Each plate will have a convenient number of symmetrically placed wells (for example, 6, 12, or 18). A fixed amount of human serum is then pipetted into a well. The antigen in the serum diffuses out from the well and reacts (precipitates) with the antibody in the antiserum gel. A visible precipi.tate ring is formed about the well. Each well will produce one assay. This is illustrated in Fig. 1 for four assays on a plate with six holes.

Figure 1

The higher the concentration of the immunoglobulin in the serum the larger the precipitate ring will be. Thus the size of the precipitate ring is a function of the immunoglobulin concentration (and random error).

The size of the ring is customarily measured in one of two ways. The simplest measure is the average of the horizontal and vertical diameters (see Fig. 1). This is the measure we will use, and it is abbreviated by RSD (for ring size diameter). Usually this is quite
satisfactory because only in rare instances will be precipitate rings look noncircular. An alternative method of measuring the ring size is to magnify and silhouette the ring on a piece of paper by means of a light, cut out the silhouetted ring on the paper, and weigh the paper. This method takes mach longer and also suffers from inaccuracies. The standard curve for the bioassay can be constructed from purified immunoglobulin whose concentration has been accurately determined by other means (microkjeldahl analysis and spectrophotomerry, for example). Various dilutions of the purified immunoglobulin are assayed on agar plates to find what RSD each dilution gives. From the known concentrations of the dilutions and the resulting RSD's the standard curve can be fitted.

The standard curve of RSD vs. concentration can have various shapes depending on the immunoglobulin, the time allotted for the precipitation, etc. In most cases a reasonable linear fit cin be obtained over a wide range of concentrations (or RSD's) in either the original scale or in log scales. In the numerical example to be presented later in Section 4 the assay curve for γ_{G} is linear (over a large range) for RSij vs. log concentration. Some investigators have found the concentration to be Inear vs. the area of the precipitate ring (see [3]). From the statistical point of view the analysis is simplest when a scale for RSD or concentration or both can be found for which the relationship is linear (and normality and homoscedasticity are achieved).

Radial immonodiffusion can be applied to otber proteins (for example, serum albumin) besides immunoglobulins. Mancini, Carbonara, and Horemans [3] give a mach fuller discussion of the use of this assay than the brief discription here.

Currently at, Stanford this assay is being used to study the everage levels and variability of the three immunoglobulins in normal, healthy subjects. Once the "norma?:" levels have been established, this assay and unlimited simultaneous discrimination intervals can be used to pick out "abnormal" subjects. Unlimited simultaneous discrimination iutervals can give the clinician an idea of the accuracy and stability of the assayed immunoglobulin 'levels in patients.

In this paper two techniques for obtaining unlimited simultaneous discrimination intervals will be given. Section 2 presents a procedure which is obtained through the Bonferroni inequality and is briefly dezcribed in Miller [5]. Section 3 presents an a.lternative method based upon an idea presented in the Liebeiman-Milier [2] paper and which uses critical points tabled in that paper. Both methods lead to unlimited simultaneous discrimination intervals with the property that at least 100P percent of the discrimination intervals will contain the true x 's with confidence at least $1-\alpha$. Section 4 contains a numerical example of the bicassay described earliar. Section 5 presents discussion and comparison of the two methods for finding unlimited simpltaneous discrimination intervala.

Throughout this paper it will be assumed that

$$
\begin{equation*}
Y_{i}=\alpha+\beta x_{1}+e_{i}, \quad 1=1, \ldots, n, \tag{1}
\end{equation*}
$$

where the e_{1} are independent $N\left(0, \sigma^{2}\right)$. The pairs $\left(x_{1}, Y_{1}\right)$ are the original observations on the regression line. We will use the following custonary estimatorn of $\alpha, \beta, \sigma^{2}$:

$$
\hat{d}=a=\bar{Y}-b \bar{x},
$$

$$
\hat{\beta}=b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}},
$$

(2)

$$
\hat{\sigma}^{2}=s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-a-b x_{i}\right)^{2}
$$

The distribution theory of a, b, s^{2} is so well-known tha: there is no need to summarize it bere.

Future observations on the dependent variable will be jesignated by a superscript *, that is, Y^{*}. Let $\mu_{Y^{*}}$ denote the true mear value associated with. Y^{*}, and x^{*} the value of the indeyendent variable connected with $\mu_{X^{*}}$ (i.e., H\% $=\alpha+\beta x^{*}$). For a future observation Y^{*} the customary estimator of the value X^{*} is $\hat{X}^{*}=\left(Y^{*}-a\right) / o$. This paper is concerned with constructing upper and lower limits for each x^{*} no matter how many future Y^{*} are observed.

II. Bonferroni Intervals

The simple Bonferroni inequality says

$$
\begin{equation*}
P\{A \cap B\} \geq 1-P\left\{A^{C}\right\}-P\left(B^{C}\right\} \tag{3}
\end{equation*}
$$

This inequality is useful in combining two confilence statements for if A is one statement with confidence $1-(\dot{\alpha} / 2)$ and B is another'with confidence $1(\alpha / 2)_{\Omega}$ then both eticments hold; wifth confidence at least $1-(\alpha / 2)-(\alpha / 2)=1-\alpha$. The idea behind the Bonferroni intervala if to combine (for a given $\left.Y^{*}\right)$ the confidence interval on $H_{Z^{*}}$ with the confidence band on the line $\mu=\boldsymbol{\alpha}+\beta x$. If the standard deviation σ were know, then each intervel
(4)

$$
Y^{*} \pm N(P) \sigma,
$$

where $\mathbb{N}(P)$ is defined by

$$
\begin{equation*}
P=\frac{1}{\sqrt{2 \pi}} \int_{-N(P)}^{+N(P)} e^{-y^{2} / 2} d y \tag{5}
\end{equation*}
$$

would have probability P of containing the true $\mu_{Y^{*}}$. For each μ in the interval (4), the Working-Hotelling confidence band on the line $\mu=\alpha+\beta x$ gives a confidence interval for the corresponding $x=(\mu-\alpha) / \beta$. The union of all these confidence intervals as μ varies over the interval (4) would give a discrimination interval for x^{*}.

But σ is not known. However, if it can be bounded above with known confidence, then this bound can be inserted in (4) to produce intervals which have probability at least P of containing their true $\mu_{Y^{*}}$.s. The Bonferroni inequality is used to combine the confidence in the bound on σ with the confidence on the band about the line $\mu=\alpha+\beta x$.

This procedure is illustrated in Fig. 2. The interval in the brace on the y-axis is the confidence interval for $\mu_{\chi^{*}}$; the interval in the brace on the x-axis is the discrimination interval. If $\mu_{Y^{*}}$ is containe in the interval $Y^{*} \pm \Delta$, and if the Working-Hotelling confidence band contains the line $\mu=\alpha+\beta x$, then the point ($x^{*}, \alpha+\beta x^{*}$) must lie in the sided region and x^{*} must lie in the indicated (discrimi.nation) interval.

Figure 2

Mathematically the discrimination intervals are constructed as follows. The Working-Hoteling confidence band on the regression linc $\mu=\alpha+\beta x$ is

$$
\begin{equation*}
\alpha+\beta x \in a+b x \pm\left(2 F_{2, n-2}^{\alpha / 2}\right)^{\frac{1}{2}} s\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{i}\left(x_{1}-\bar{x}\right)^{2}}\right) \frac{1}{2} \tag{6}
\end{equation*}
$$

for all x. The critical point $\frac{\alpha / 2}{F_{2, n-2}}$ is the upper $\alpha / 2$ percen:ile point of the F distribution with degrees of freedom $2, n-2$. With probability 1-($\alpha / 2$) the band (6; contains the true regression line The unknown standard deviation o can be bounded above by

$$
\begin{equation*}
0 \leq\left(\frac{n-2}{\alpha / 2 x_{n-2}^{2}}\right)^{\frac{1}{2}} 8 \tag{7}
\end{equation*}
$$

where $\alpha / 2 x_{n-2}^{2}$ is the lower $\alpha / 2$ percentile point of the x^{2} distribution with $n-2$ degrees of freedom. With probability l-($\alpha / 2$) the inequality (6) holds true.

By the Bonferroni inequality (3), the probability (with respect to $\left.\left(x_{1}, Y_{1}\right), \ldots,\left(x_{n}, Y_{n}\right)\right)$ that both (6) and (7) hold is at least $1-\alpha$.

For a future observation Y^{*} the 100P percent confidence interval on its true mean $\mu_{Y^{*}}$ is $Y^{*} \pm N(P) \sigma$. As the number of future obser:vations tends to infinity the proportion of intervals which correctly contain their true means converges to P by the law of large numbers. But the interval $Y^{*} \pm N(P) \sigma$ is contained in the interval

$$
\begin{equation*}
Y^{*} \pm N(P)\left(\frac{n-2}{\alpha / 2 x_{n-2}^{2}}\right)^{\frac{1}{2}} s \tag{8}
\end{equation*}
$$

(with probability $1-(\alpha / 2)$). Thus, the (limiting) proportion of intervals (8) which correctly contain their true means is at least P (with probability 1-($\alpha / 2)$).

The discrimination interval is obtained by intersecting the interval (8) on the y-axis with the confidence band on $\alpha+\beta x$, and projecting the intersection onto the x-axis. This is illustrated in Fig. 2. Actually, Fig. 2 represents the nice case. The discrimination "interval" can be the entire real line or the union of two semi-infinite intervals. These pathological cases will occur when the regression line is too flat (i.e., when b is too near zero relative to its variability). These cases are directly analogous to what can happen for a single discrimination where this pathology is referred to as the Fieller-Creasy paradcx. The reader can visualize when these pathological cases occur by redrawing

Fig. 2 with a much flatter slope and shifting the $\mu_{Y^{*}}$ interval up and down. The necessary and stifficient condition for the discrimination "interval" to be a nice finite interval is

$$
\begin{equation*}
b^{2}>\frac{2 F_{2, n-2}^{\alpha / 2} s^{2}}{\sum_{1}\left(x_{i}-\bar{x}\right)^{2}} \tag{9}
\end{equation*}
$$

Only the nice case will be considered in this paper.
Let $\left[\underline{D}_{Y^{*}}(P), \bar{D}_{Y^{*}}(P)\right]=\left[\underline{B}_{Y^{*}}(P), \bar{B}_{Y^{*}}(P)\right]$ be the discrimination interval (B for Bonferroni). If the sample regression line has positive slope, the upper endpoint $\bar{B}_{Y^{*}}(P)$ is the root of the equation

$$
\begin{gather*}
a+b x^{*}-\left(2 F_{2, n-2}^{\alpha / 2}\right)^{\frac{1}{2}} s\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)^{\frac{1}{2}} \tag{10}\\
=Y^{*}+N(P)\left(\frac{n-2}{\alpha^{2} x_{n-2}^{2}}\right)^{\frac{1}{2}} s,
\end{gather*}
$$

and ${\underset{Y}{Y}}^{*}(P)$ is the root of the equation

$$
\begin{align*}
a+b x^{*} & +\left(2 F_{2, n-2}^{\alpha / 2}\right)^{\frac{1}{2}} s\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{1}\left(x_{1}-\bar{x}\right)^{2}}\right)^{\frac{1}{2}} \tag{11}\\
& =Y^{*}-N(P)\left(\frac{n-2}{\alpha^{2} x_{n-2}^{2}}\right)^{\frac{1}{2}}:
\end{align*}
$$

These roots are:
(12)

$$
\bar{B}_{Y^{*}}(P)=\bar{x}+\frac{b\left(Y^{*}-\bar{Y}+Q\right)+R^{\frac{1}{2}}\left[\left(Y^{*}-\bar{Y}+Q\right)^{2}+\left(\sum_{1}\left(x_{i}-\bar{x}\right)^{2} / n\right)\left(b^{2}-R\right)\right]^{\frac{1}{2}}}{b^{2}-R}
$$

and
(13)

$$
B_{Y^{*}}(P)=\bar{x}-\frac{b\left(Q-Y^{*}+\bar{Y}\right)-R^{\frac{1}{2}}\left[\left(Q-Y^{*}+\bar{Y}\right)^{2}+\left(\sum_{I}\left(x_{i}-\bar{X}\right)^{2} / n\right)\left(b^{2}-R\right)\right]^{\frac{1}{2}}}{b^{2}-R}
$$

where

$$
\begin{aligned}
& R=\left(2 F_{2, n-2}^{\alpha / 2} s^{2}\right) / \sum_{1}\left(x_{1}-\bar{x}\right)^{2} \\
& Q=N(P)\left[(n-2) /^{\alpha / 2} x_{n-2}^{2}\right]^{\frac{1}{2}} s .
\end{aligned}
$$

If the sample regression line has negative slope, then $\bar{B}_{Y^{*}}(P)$ is the root of the equation (11) and $B_{Y^{*}}^{*}(P)$ is the root of the equation (10).
III. Augmented F Intervals

The intervals in the preceding section were derived from the joint probability statement

$$
\begin{align*}
& P\left[\alpha+\beta x \in a+b x \pm\left(2 F_{2, n-2}^{\alpha / 2}\right)^{\frac{1}{2}} s\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)^{\frac{1}{2}} \text { for all } x,\right. \tag{14}\\
& \text { and } \left.\sigma \leq\left(\frac{n-2}{c / 2 x_{n-2}^{2}}\right)^{\frac{1}{2}} \text { s }\right\} \geq 1-\alpha,
\end{align*}
$$

whose validity stemmed from the Bonferroni inequality. In this section a similar joint probability statement will be obtained from a different approach.

In [2] Lieberman and Miller proved that

$$
P\left\{\left|(a-\alpha)+(b-\beta) x \pm \mathbb{N}(P)_{\sigma}\right|\right.
$$

$$
\begin{align*}
& \left.\leq c^{*} s\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{1}\left(x_{1}-\bar{x}\right)^{2}}+p^{2}(p)\right)^{\frac{1}{2}} \text { for all } x, P\right\} \tag{15}\\
& \quad=1-\alpha,
\end{align*}
$$

where the critical point c* is defined by

$$
\begin{equation*}
P\left\{\frac{z_{1}^{2}+z_{2}^{2}+1}{x_{n-2}^{2} /(n-2)} \leq\left(c^{*}\right)^{2}\right\}=1-\alpha \tag{16}
\end{equation*}
$$

The random variables z_{1}, Z_{2} are independent $N(0,1)$, and x_{n-2}^{2} is a x^{2} variable with $n-2$ degrees of freedom which is independent of z_{1} and Z_{2}. For want of a name the statistic

$$
\begin{equation*}
\frac{z_{1}^{2}+z_{2}^{2}+1}{x_{n-2}^{2} /(n-2)} \tag{17}
\end{equation*}
$$

will be referred to as the augmented F statistic. Tables of c^{*} for $\alpha=.5, .3, .1, .05, .01, .001 ; n-2=1(1) 30(5) 50(10) .100$ are given in [2].

By taking $N(P)=0$ for the first inequality, and letting $N(P) \rightarrow$ $+\infty$ for the second inequality, the expression (15) implies that

$$
\begin{equation*}
P\left(|(a-\alpha)+(b-\beta) x| \leq c^{*} s\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{i}\left(x_{1}-\bar{x}\right)^{2}}\right)^{\frac{1}{2}} \text { for all } x\right. \text {, } \tag{18}
\end{equation*}
$$

$$
\text { and } \left.\sigma \leq c^{*} \text { s }\right\} \geq 1-\alpha \text {. }
$$

The probability in (18) is actually greater than $1-\alpha$ because not all combinations of x and $N(P)$ are utilized inside the probability sign. Thus, the confidence band

$$
\begin{equation*}
\alpha+\beta x \in a+b x \pm c^{*} \cdot\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{1}\left(x_{1}-\bar{x}\right)^{2}}\right)^{\frac{1}{2}} \text { for all } x \text {, } \tag{19}
\end{equation*}
$$

and the bound

$$
5 \leq \mathrm{c}^{*}
$$

hold simultaneousiy with probability at least $1-\alpha$.

The construction of the discrimination intervals now proceeds exactly as in the preceding section with (19) replacing (6) and (20) replacing (7). The discrimination "intervals" will all be nice finite intervals if and only if

$$
\begin{equation*}
b^{2}>\frac{\left(c^{*}\right)^{2} s^{2}}{\sum_{i}\left(x_{1}-\bar{x}\right)^{2}} . \tag{21}
\end{equation*}
$$

Only the nice case will be considered in this paper.
Let $\left[\underline{D}_{Y^{*}}(P), \bar{D}_{Y^{*}}(P)\right]=\left[\underline{C}_{Y^{*}}(P), \overline{\mathrm{C}}_{Y^{*}}(P)\right]$ be the discrimination interval (C for the method based upon C^{*}). If the sample regression line has positive slope, the upper endpoint $\overline{\mathrm{C}}_{\mathrm{Y}}{ }^{*}(\mathrm{P})$ is the root of the equation
(22)

$$
\begin{aligned}
a+b x^{*} & =c^{*} s\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{1}\left(x_{i}-\bar{x}\right)^{2}}\right)^{\frac{1}{2}} \\
& =Y^{*}+N(P) c^{*} s,
\end{aligned}
$$

and $\cdot \underline{C}_{Y} *(P)$ is the root of the equation
(23)

$$
\begin{gathered}
a+b x^{*}+c^{*} s\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{1}\left(x_{i}-\bar{x}\right)^{2}}\right)^{\frac{1}{2}} \\
=Y^{*}-N(P) c^{*} s .
\end{gathered}
$$

These roots are

and

$$
\begin{equation*}
\bar{C}_{Y^{*}}(P)=\bar{X}+\frac{b\left(D+Y^{*}-\bar{Y}\right)+E^{\frac{1}{2}}\left[\left(D+Y^{*}-\bar{Y}\right)^{2}+\left(\sum_{1}\left(x_{1}-\bar{X}\right)^{2} / n\right)\left(b^{2}-E\right)\right]^{\frac{1}{2}}}{b^{2}-E} \tag{24}
\end{equation*}
$$

(25)

$$
C_{Y^{*}}(P)=\bar{x}-\frac{b\left(D-Y^{*}+\bar{Y}\right)-E^{\frac{1}{2}}\left[\left(D-Y^{*}+\bar{Y}\right)^{2}+\left(\sum_{1}\left(x_{1}-\bar{X}\right)^{2} / n\right)\left(b^{2}-E\right)\right]^{\frac{1}{2}}}{b^{2}-\mathbb{E}}
$$

where

$$
\begin{aligned}
& E=\left(c^{* 2} s^{2}\right) / \Sigma\left(x_{1}-\bar{x}\right)^{2} \\
& D=N(P) c^{* 2} s .
\end{aligned}
$$

If the sample regression line has negative slope, then $\overline{\mathrm{C}}_{\mathrm{Y}^{*}}(\mathrm{P})$ is the root of the equation (23) and $\underline{C}_{Y^{*}}(P)$ is the root of the equation (22).

IV. Numerical Example

A biassay of the gamma globulin γ_{G} was performed at the Stanford University Medical Center using the method of radial immunodiffusion described in section I. The ring size diameter (RSD) was measured on two wells for each of seven known concentrations of γ_{G}. The resulting data are given in Table 1.

Table 1

	$\underline{(R . S . D . ~})^{\underline{1 /}}$	$\underline{z(m g ~ \% ~} \gamma_{G}$)	$x\left(\log _{10} 2\right)$
	$68 ., 68$	1383.6	3.1410
	62,62	696.8	2.8431
	62.5,62.5	716.9	2.8555
	55.5,55.5	328.3	2.5163
	56,56	335.0	2.5250
	48,49	147.4	2.1685
	48, 48	140.7	2.1483
$\bar{x}=2.5997 ; \quad \bar{y}=57.2143 ; \quad a=4.8790 ; \quad b=20.1300 ;$			
$s=.25693$	9) $\sum_{i=1}^{14}\left(x_{1}-\right.$	1.6398	

Inch of the fourteen measurements of the $y^{\prime} s$ is the average of the horisintal and vertical diameters.

The usual test of linearity shows that a simple linear regression of RSD on log concentration fits the data quite well. The graph of Fip: 3 presents the above data and the associated estimated regression line $\hat{y}=a+b x$.

At each of three hypothetical future values of $Y^{*}, 57.20,70$, and 80, unlimited simu!taneous discrimination intervals for the associated X^{*} values have been computed at $\alpha=.01, .05$ and $P=.30, .80$ using the Bonferroni and augmented F methods (equations (12), (13) and (24), (25)). The results of these computations are presented in Table 2.

Table 2

α	P	Y^{*} (RSD)	$\underline{B}_{Y}{ }^{*}(\mathrm{P}), \overline{\mathrm{B}}_{\mathrm{Y}} *(\mathrm{P})$	$\bar{B}_{Y}{ }^{*}(P)-\underline{B}_{Y} *(P)$	$\underline{C}_{Y^{*}}(P), \bar{C}_{Y^{*}}(P)$	$\bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P)$
. 01	. 30	57.20	2.582,2.617	. 035	2.566,2.633	. 067
		70	3.203,3.269	. 066	3.188,3.285	. 097
		80	3.682,3.786	. 104	3.667,3.801	. 134
	. 80	57.20	2.575,2.624	. 049	2.520,2.679	. 159
		70	3.196,3.277	. 081	3.144,3.333	. 189
		80	3.675,3.794	. 119	3.623,3.849	. 226
. 05	. 30	57.20	2.585,2.614	. 029	2.574,2.625	. 051
		70	3.209,3.262	. 053	3.199,3.273	. 074
		80	3.692,3.774	. 082	3.682,3.785	. 103
	. 80	57.20	2.577,2.622	. 045	2.538,2.660	. 122
		70	3.210,3.271	. 069	3.164,3.310	. 146
		80	3.684,3.783	. 099	3.648,3.821	. 173

The y^{*} value 57.20 is equal to $a+b x$. Therefore, for fixed α and P; the intervals for the corresponding x^{*} have lengths shorter than intervals corresponding to any other value of Y^{*}.

Because of the symmetry of this problem about the point $X^{*}=a+b \bar{x}$, an interval for x^{*} corresponding to $y^{*}=44.40$ would have the same
length as the interval for x^{*} corresponding to $y^{*}=70$. The eame relationship exists for intervals on $x^{* \cdot \prime}$ s corresponding to Y^{*} values of 34.40 and 80 . It is implicit here that a Y^{*} value as large as 80 (or as small as 34.40) is within the range of linearity.

This example indicates that both methods can be of practical importance. The lengths of the intervals are short enough to be useful for picking out subjects who have "abnormal" concentrations of γ_{G} (see section I). It is also evident that for this example the Bonferunni intervals are shorter than the intervals obtained using the augmented F procedure.

V. Comparisons and Discussion

The equations for the Bonferroni intervals (Sec.2) and the augmented F intervals (Section 3) are not related in a way that enables one to completely define conditions under which one method always produces shorter intervals than the others. Of course, the interval lengths can always be compared for given data: ; In addition, the interval lengths for the two methods are amenable to comparison when the Y^{*} values are close to the number $a+b \bar{x}$ or when the Y^{*} values are far from $a+b \bar{x}$. These two situations are discussed below.

The comparison for the former situation is stated in terms of the statistic $\frac{b^{2} \sum\left(x_{1}-x\right)^{2}}{s^{2}}=f$, say. Distribution theory for f is wellknowns in fact, f bas an F distribution with 1 and $n-2$ degrees of freedom under the hypothesis that $\beta=0$ and a non-central. F-distribution when $\beta \notin 0$. Hence, it can be said thet if f is quite large, then b is hishly sigmificantly dif.erent from zero, and conversely.

Notice that f is Ereater than $2 F_{2, n-2}^{\alpha / 2}$ and f is greater than $c^{* 2}$ if and only if ald Bonferroni and augmented F intervals are of finite length (see equations 9 and 21). To avoid infinite-length intervals, let $f>2 F_{2, n-2}^{\alpha / 2}$ and $f>c^{* 2}$ for the discussion below.

Suppose Y^{*} is so close to $a+b \bar{x}$ that $Y^{*}-(a+b \bar{x})$ makes a negligible contribution to the computations of $\mathrm{B}_{\mathrm{Y}^{*}}(\mathrm{P})$ and $\mathrm{C}_{\mathrm{Y}^{*}}(\mathrm{P})$. Then, (26)

$$
\begin{aligned}
& \bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P)<\bar{B}_{Y^{*}}(P)-\underline{B}_{Y^{*}}(P) \quad \text { if and only if } \\
& h(f) \equiv f-2 F_{2, n-2}^{\alpha / 2} \\
& <\left(f-c^{* 2}\right)\left\{\frac{\left(N(P)\left(\frac{n(n-2) f}{\alpha / 2 X_{n-2}^{2}}\right)^{\frac{1}{2}}+\left[n N^{2}(P) \frac{(n-2) 2 F_{2, n-2}^{\alpha / 2}}{\alpha / 2 x_{n-2}^{2}}-\left(2 F_{2, n-2}^{\alpha / 2}\right)^{2}+2 f F_{2, n-2}^{\alpha / 2}\right]^{\frac{1}{2}}\right.}{N(P) c^{*}(n f)^{\frac{1}{2}}+\left[n N^{2}(P) c^{*^{4}}-c^{*^{4}}+c^{* 2} f\right]^{\frac{1}{2}}}\right\} \equiv g(f) .
\end{aligned}
$$

By comparing tabled values of c^{*} and $F_{2, n-2}^{\alpha / 2}$, one finds that $c^{* 2}<2 F_{2, n-2}^{\alpha / 2}$ at $\alpha=.001, .01, .05, .10$, and .30 , and $n=3,7,12,32$, 62, and 102. It is reasonable to state without formal proof that at least for $3 \leq n \leq 102$ and $.001 \leq \alpha \leq .30, c^{* 2}<2 F_{2, n-2}^{\alpha / 2}$. Since $g(f) \geq 0$ for $f \geq c^{*^{2}}$ and $h(f)=0$ at $f=2 F_{2, n-2}^{\alpha / 2}$ then $h(f) \leq$ $g(f)$ and $\bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P) \leq \bar{B}_{Y^{*}}(P)-\underline{B}_{Y^{*}}(P)$, when $2 F_{2, n-2}^{\alpha / 2} \leq f \leq f_{0}$, where f_{0} is the point at which the curves $h(f)$ and $g(f)$ first cross above $2 \mathrm{~F}_{2, n-2}^{\alpha / 2}$ more explicitiy, where f_{0} is the infimum of f values greater than $2 F_{2, n-2} / 2$ such thet $g\left(f^{\circ}\right)<h(f)$.

Some representative values of f_{0} for various levels of α, P, and n are given in Table 3. These values were found using an iterative procedure.

After computing f_{0} for the desired α and P levels, die can ind $\quad P\left(2 \Gamma_{2, n-2}^{\alpha / 2}<f<f_{0}\right)$ for several values of β. This information

Figure 3. A simple linear regreasion estimate basid on measuraments of ring aize diamater oit two weils at each of 7 concentrations of gemmagobilin (mg. \& of γ_{g}) using a radial immodiffusion assay.
can be used by the statistician who must recommend an unlimited simultaneous discrimination interval method to his client before the data are observed. For example, if the probabilities are large, the statistician can recommend the use of the augmented F method knowing that it will produce shorter intervals than the Bonferroni method for Y^{*} values near $a+b \bar{x}$ most of the time.

Table 3

\underline{n}	$\underline{\underline{\alpha}}$	\underline{P}	$2 F_{2, n-2}^{\alpha / 2}$	${ }^{* 2}$	${ }_{-0}$
7	. 10	. $50, .80, .90$	11.6	10.3	14.2
7	. 30	. $50, .80, .90$	5.7	4.8	8.4
15	. 001	. $50, .80, .90$	29.0	27.6	30.1
15	. 10	. $50, .80, .90$	7.6	7.0	8.4
15	. 30	. $50, .80, .90$	4.4	3.9	5.4
102	. 001	. $50, .80, .90$	16.4	16.0	16.6
102	. 10	. $50, .80, .90$	6.2	5.7	6.5

Although $2 \mathrm{~F}_{2, \mathrm{n}-2}^{\alpha / 2}<\mathrm{f}<\mathrm{f}_{0}$ implies that $\bar{C}_{\mathrm{Y}^{*}}(\mathrm{P})-\mathrm{C}_{\mathrm{Y}^{*}}(\mathrm{P})<\overline{\mathrm{B}}_{\mathrm{Y}^{*}}(\mathrm{P})-\mathrm{B}_{\mathrm{Y}^{*}}(\mathrm{P})$, it is not necessarily true that $\mathrm{I}>\mathrm{f}_{0}$ implies that $\bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P)>$ $\bar{B}_{Y^{*}}(P)-B_{Y} *(P)$. This is because the curves $h(f)$ and $g(f)$ may cross more than once. It can be shown that if f is very large and $N(P) \sqrt{n}$ is large enough then $h(f)>g(f)$ and $\bar{B}_{Y^{*}}(P)-\underline{B}_{Y^{*}}(P)<\bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P)$. A "large enough" value for $N(P) \sqrt{n}$ is not a very restrictive condition; e.g., $N(P)$ must be greater than .08 if $\alpha=.10, n=102, N(P)$ must be greater than 1.06 if $\alpha=.001, n=12$. Thus it is generally true if b is highly significantly different from zero and if y^{*} is not far from $a+b \bar{x}$, then the Bonferroni method will produce shorter intervals than the augmented F method.

For the example of section $4, f=10,068$ indicating that b is highly significantly different from zero. It is not surprising, therefore, that every Bonferroni interval in Table 1 is shorter than the corresponding augmented F interval.

Now consider the situation where the Y^{*} values are such that $\left|Y^{*}-(a+b \bar{x})\right|$ is so large that $\frac{s^{2}}{n}\left(f-2 F_{2, n-2}^{\alpha / 2}\right), \frac{s^{2}}{n}\left(f-c^{* 2}\right), N(P)\left[\frac{n-2}{\alpha / 2 \chi_{n-2}^{2}}\right]^{\frac{1}{2}} s$, $N(P) C^{*} s$ are negligible in comparison. Then $\bar{B}_{Y^{*}}(P)-B_{Y^{*}}(P)$ is approximately equal to

$$
2 b\left(\frac{2 F_{2}^{\alpha / 2}}{5}\right)^{\frac{1}{2}}\left|Y^{*}-(a+b \bar{x})\right|
$$

and $\bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P)$ is approximately equal to

$$
2 b \frac{\dot{c}^{*}}{\sqrt{f}}\left|Y^{*}-(a+b \bar{x})\right|
$$

Therefore, $\quad \bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P)<\bar{B}_{Y^{*}}(P)-B_{Y^{*}}(P) \quad$ if and only if $c^{* 2}<2 F_{2, n-2} \alpha / 2$ As indicated earlier, $2 F_{2, n-2}^{\alpha / 2}>c^{* 2}$ for $3 \leq n \leq 102$ and $.001<\alpha<.30$. Consequently, for Y^{*} values far from $a+b \bar{x}$, it is generally true that the augmented F method provides shorter intervals than does the Bonferroni method.

For the immunodiffusion data discussed in Section 4,

$$
\begin{aligned}
\bar{B}_{Y^{*}}(.80)-\underline{B}_{Y^{*}}(.80)= & .023486+.0015828\left\{\left[\left(Y^{*}-(a+b \bar{x})+.23615\right)^{2}\right.\right. \\
& \left.+47.415]^{\frac{1}{2}}+\left[\left(.23615-Y^{*}+(a+b \bar{x})\right)^{2}+47.415\right]^{\frac{1}{2}}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{C}_{Y^{*}}(.80)-\mathcal{C}_{Y^{*}}(.80)= & .10088+.0015263\left(\left[\left(1.01440+Y^{*}-(a+b \bar{x})\right)^{2}\right.\right. \\
& \left.+47.418]^{\frac{1}{2}}+\left[\left(1.01440-Y^{*}+(a+b \bar{x})\right)^{2}+47.418\right]^{\frac{1}{2}}\right\}
\end{aligned}
$$

1f $P=.80, \alpha=.05$. Hence, $\bar{C}_{Y^{*}}(.80)-{\underset{Y}{Y^{*}}}(.80)<\bar{B}_{Y^{*}}(.80)-{\underset{Y}{Y}}_{*}(.80)$
if and only if $\left|Y^{*}-(a+b \bar{x})\right|>686$. Since Y^{*} cannot be negative, the augmented F intervals will be shorter than the Bonferroni intervals if and only if the Y^{*} values are greater than 744 .

Obviously, an RSD value of 744 or larger will never be observed and one concludes that, if $P=.80$ and $\alpha=.05$, the Bonferroni method is definitely better than the augmented F method for estimating unlimited simultaneous discrimination intervals based on the immunodiffusion data.

Extremely large values of Y^{*} are not always necessary for one to be certain that $\bar{C}_{Y^{*}}(P)-\underline{C}_{Y^{*}}(P)$ is less than $\bar{B}_{Y^{*}}(P)-\underline{B}_{Y^{*}}(P)$. If f is small, n is small, α is large, and P is small then $\bar{C}_{Y^{*}}(P)-C_{Y^{*}}(P)$ may be less than $\bar{B}_{Y^{*}}(P)-\underline{B}_{Y^{*}}(P)$ for all Y^{*} values greater than a point which is not far from $a+b \bar{x}$. For any of the usual choices of α and P levels and normal regression data (n and f not small), however, it appears that Y^{*} would have to be very far from ai-b \bar{x} before one could be certain that $\bar{C}_{Y^{*}}(P)-\mathcal{C}_{Y^{*}}(P)<\bar{B}_{Y^{*}}(P)-B_{Y^{*}}(P)$.

It should be mentioned that the augmented F method can be expected to produce short intervals when n is small. In fact, in the limiting case of $n=3$, the augmented F procedure yields shorter intervals than the Bonferroni method for any choices of α, P, Y^{*}, and any data (subject to $f>c^{*^{2}}$). This is because at $n=3, c^{*^{2}}<\frac{n-2}{\alpha / x_{n-2}^{2}}$ and $c^{* 2}<2 F_{2, n-2}^{\alpha / 2}$ for every α.

The above comparisons of the lengths of irtervals provided by the Bonferroni and augmented F procedures do not yield explicit results. Nevertheless, one has the impression that 'n most problems where these methods can be useful, the method based on the Bonferroni inequality will yield shorter unlimited simultaneous discrimination intervalsme eapecially when the future Y^{*} values are not expected to be far from $a+b \bar{x}$.

Acknowledgment

The authors would like to thank Judith Grindle for programming the computations presented in this paper.

Bibliography

[1] Lieberman, G. J., 1961. Prediction Regions for Şveral Predictions from a Single Regression Line. Technometrics, 3, 21-27.
[2] Lieberman, G. J., and Miller, R. G., 1963. Simultaneous Tolerance Intervals in Regression. Biometrika, 50, 155-168.
[3] Mancini, G., Carbonara, A. O., and Heremans, J. F., 1965. Immunochemical Quantitation of Antigens by Single Radial Immunodiffusion. Immunochemistry, 2, 235-254.
[4] Mandel, J., 1958. A Note on Confidence Intervals in Regression Problems. Ann. Math. Statist., 29, 903-907.
[5] Miller, R. G., 1966. Simultaneous Statistical Inference. McGrawHill Book Co., New York.

TNCLASSSIFIED
Security Classification

