4,980 research outputs found

    Free Energy of a Dilute Bose Gas: Lower Bound

    Full text link
    A lower bound is derived on the free energy (per unit volume) of a homogeneous Bose gas at density ρ\rho and temperature TT. In the dilute regime, i.e., when a3ρ1a^3\rho \ll 1, where aa denotes the scattering length of the pair-interaction potential, our bound differs to leading order from the expression for non-interacting particles by the term 4πa(2ρ2[ρρc]+2)4\pi a (2\rho^2 - [\rho-\rho_c]_+^2). Here, ρc(T)\rho_c(T) denotes the critical density for Bose-Einstein condensation (for the non-interacting gas), and []+[ ]_+ denotes the positive part. Our bound is uniform in the temperature up to temperatures of the order of the critical temperature, i.e., Tρ2/3T \sim \rho^{2/3} or smaller. One of the key ingredients in the proof is the use of coherent states to extend the method introduced in [arXiv:math-ph/0601051] for estimating correlations to temperatures below the critical one.Comment: LaTeX2e, 53 page

    Ground State Asymptotics of a Dilute, Rotating Gas

    Full text link
    We investigate the ground state properties of a gas of interacting particles confined in an external potential in three dimensions and subject to rotation around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP) limit of a dilute gas. Analyzing both the absolute and the bosonic ground state of the system we show, in particular, their different behavior for a certain range of parameters. This parameter range is determined by the question whether the rotational symmetry in the minimizer of the GP functional is broken or not. For the absolute ground state, we prove that in the GP limit a modified GP functional depending on density matrices correctly describes the energy and reduced density matrices, independent of symmetry breaking. For the bosonic ground state this holds true if and only if the symmetry is unbroken.Comment: LaTeX2e, 37 page

    On the maximal ionization of atoms in strong magnetic fields

    Full text link
    We give upper bounds for the number of spin 1/2 particles that can be bound to a nucleus of charge Z in the presence of a magnetic field B, including the spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1 for magnetic fields that go to zero at infinity, ignoring the spin-field interaction. For particles with fermionic statistics in a homogeneous magnetic field our upper bound has an additional term of order Z×min(B/Z3)2/5,1+ln(B/Z3)2Z\times\min{(B/Z^3)^{2/5},1+|\ln(B/Z^3)|^2}.Comment: LaTeX2e, 8 page

    The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps

    Full text link
    Starting from the full many body Hamiltonian we derive the leading order energy and density asymptotics for the ground state of a dilute, rotating Bose gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to infinity. Although the many-body wave function is expected to have a complicated phase, the leading order contribution to the energy can be computed by minimizing a simple functional of the density alone

    The Ground States of Large Quantum Dots in Magnetic Fields

    Full text link
    The quantum mechanical ground state of a 2D NN-electron system in a confining potential V(x)=Kv(x)V(x)=Kv(x) (KK is a coupling constant) and a homogeneous magnetic field BB is studied in the high density limit NN\to\infty, KK\to \infty with K/NK/N fixed. It is proved that the ground state energy and electronic density can be computed {\it exactly} in this limit by minimizing simple functionals of the density. There are three such functionals depending on the way B/NB/N varies as NN\to\infty: A 2D Thomas-Fermi (TF) theory applies in the case B/N0B/N\to 0; if B/Nconst.0B/N\to{\rm const.}\neq 0 the correct limit theory is a modified BB-dependent TF model, and the case B/NB/N\to\infty is described by a ``classical'' continuum electrostatic theory. For homogeneous potentials this last model describes also the weak coupling limit K/N0K/N\to 0 for arbitrary BB. Important steps in the proof are the derivation of a new Lieb-Thirring inequality for the sum of eigenvalues of single particle Hamiltonians in 2D with magnetic fields, and an estimation of the exchange-correlation energy. For this last estimate we study a model of classical point charges with electrostatic interactions that provides a lower bound for the true quantum mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil

    Gradient corrections for semiclassical theories of atoms in strong magnetic fields

    Full text link
    This paper is divided into two parts. In the first one the von Weizs\"acker term is introduced to the Magnetic TF theory and the resulting MTFW functional is mathematically analyzed. In particular, it is shown that the von Weizs\"acker term produces the Scott correction up to magnetic fields of order BZ2B \ll Z^2, in accordance with a result of V. Ivrii on the quantum mechanical ground state energy. The second part is dedicated to gradient corrections for semiclassical theories of atoms restricted to electrons in the lowest Landau band. We consider modifications of the Thomas-Fermi theory for strong magnetic fields (STF), i.e. for BZ3B \ll Z^3. The main modification consists in replacing the integration over the variables perpendicular to the field by an expansion in angular momentum eigenfunctions in the lowest Landau band. This leads to a functional (DSTF) depending on a sequence of one-dimensional densities. For a one-dimensional Fermi gas the analogue of a Weizs\"acker correction has a negative sign and we discuss the corresponding modification of the DSTF functional.Comment: Latex2e, 36 page

    Evaluation of a fluorocarbon plastic used in cryogenic valve seals

    Get PDF
    Effects of strain rate, temperature, crystallinity, and surface finish /smoothness/ on the tensile strength of a commercial chlorotrifluorethylene plastic /CTFE/ used for lipseals in very fast-acting liquid oxygen valves

    Uniform Density Theorem for the Hubbard Model

    Full text link
    A general class of hopping models on a finite bipartite lattice is considered, including the Hubbard model and the Falicov-Kimball model. For the half-filled band, the single-particle density matrix \uprho (x,y) in the ground state and in the canonical and grand canonical ensembles is shown to be constant on the diagonal x=yx=y, and to vanish if xyx \not=y and if xx and yy are on the same sublattice. For free electron hopping models, it is shown in addition that there are no correlations between sites of the same sublattice in any higher order density matrix. Physical implications are discussed.Comment: 15 pages, plaintex, EHLMLRJM-22/Feb/9

    A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity

    Full text link
    We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is \Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m positive definite operators A_j. In part I we only considered the case q=1 and proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2. We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also able to include the parameter q\geq 1 and still retain the convexity. Among other things this leads to a definition of an L^q(L^p) norm for operators when 1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of three Hilbert spaces -- which leads to another proof of strong subadditivity of entropy. We also prove convexity/concavity properties of some other, related functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces earlier draft. 18 pages, late

    Derivation of the Gross-Pitaevskii Hierarchy

    Full text link
    We report on some recent results regarding the dynamical behavior of a trapped Bose-Einstein condensate, in the limit of a large number of particles. These results were obtained in \cite{ESY}, a joint work with L. Erd\H os and H.-T. Yau.Comment: 15 pages; for the proceedings of the QMath9 International Conference, Giens, France, Sept. 200
    corecore