10 research outputs found

    Brief report:effects of sensory sensitivity and intolerance of uncertainty on anxiety in mothers of children with autism spectrum disorder

    Get PDF
    This study examined the relations between anxiety and individual characteristics of sensory sensitivity (SS) and intolerance of uncertainty (IU) in mothers of children with ASD. The mothers of 50 children completed the Hospital Anxiety and Depression Scale, the Highly Sensitive Person Scale and the IU Scale. Anxiety was associated with both SS and IU and IU was also associated with SS. Mediation analyses showed direct effects between anxiety and both IU and SS but a significant indirect effect was found only in the model in which IU mediated between SS. This is the first study to characterize the nature of the IU and SS interrelation in predicting levels of anxiety

    The Adult Repetitive Behaviours Questionnaire-2 (RBQ-2A): A Self-Report Measure of Restricted and Repetitive Behaviours

    Get PDF
    In two studies we developed and tested a new self-report measure of restricted and repetitive behaviours (RRB) suitable for adults. In Study 1, The Repetitive Behaviours Questionnaire-2 for adults (RBQ-2A) was completed by a sample of 163 neurotypical adults. Principal components analysis revealed two components: Repetitive Motor Behaviours and Insistence on Sameness. In Study 2, the mean RBQ-2A scores of a group of adults with autism spectrum disorder (ASD; N = 29) were compared to an adult neurotypical group (N = 37). The ASD sample had significantly higher total and subscale scores. These results indicate that the RBQ-2A has utility as a self-report questionnaire measure of RRBs suitable for adults, with potential clinical application

    Functional movement disorder gender, age and phenotype study: a systematic review and individual patient meta-analysis of 4905 cases

    Get PDF
    Functional movement disorder (FMD) is a common manifestation of functional neurological disorder presenting with diverse phenotypes such as tremor, weakness and gait disorder. Our current understanding of the basic epidemiological features of this condition is unclear. We aimed to describe and examine the relationship between age at onset, phenotype and gender in FMD in a large meta-analysis of published and unpublished individual patient cases. An electronic search of PubMed was conducted for studies from 1968 to 2019 according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Individual patient data were collected through a research network. We described the distribution of age of onset and how this varied by gender and motor phenotype. A one-stage meta-analysis was performed using multilevel mixed-effects linear regression, including random intercepts for country and data source. A total of 4905 individual cases were analysed (72.6% woman). The mean age at onset was 39.6 years (SD 16.1). Women had a significantly earlier age of onset than men (39.1 years vs 41.0 years). Mixed FMD (23.1%), tremor (21.6%) and weakness (18.1%) were the most common phenotypes. Compared with tremor (40.7 years), the mean ages at onset of dystonia (34.5 years) and weakness (36.4 years) were significantly younger, while gait disorders (43.2 years) had a significantly later age at onset. The interaction between gender and phenotype was not significant. FMD peaks in midlife with varying effects of gender on age at onset and phenotype. The data gives some support to 'lumping' FMD as a unitary disorder but also highlights the value in 'splitting' into individual phenotypes where relevant

    Gender disparity and abuse in functional movement disorders:a multi-center case-control study

    Get PDF
    BACKGROUND: To determine gender differences in rates of sexual and physical abuse in functional movement disorders compared to controls and evaluate if the gender disparity of functional movement disorders is associated with abuse history. METHODS: We performed a retrospective case-control study of self-reported trauma data from 696 patients (512 women) with functional movement disorders from six clinical sites compared to 141 controls (98 women) and population data. Chi-square was used to assess gender and disorder associations; logistic regression was used to model additive effects of abuse and calculate the attributable fraction of abuse to disorder prevalence. RESULTS: Higher rates of sexual abuse were reported by women (35.3%) and men (11.5%) with functional movement disorders compared to controls (10.6% of women; 5.6% of men). History of sexual abuse increased the likelihood of functional movement disorders among women by an odds ratio of 4.57 (95% confidence interval 2.31–9.07; p < 0.0001) and physical abuse by an odds ratio of 2.80 (95% confidence interval 1.53–5.12; p = 0.0007). Population attributable fraction of childhood sexual abuse to functional movement disorders in women was 0.12 (0.05–0.19). No statistically significant associations were found in men, but our cohort of men was underpowered despite including multiple sites. CONCLUSION: Our study suggests that violence against women may account for some of the gender disparity in rates of functional movement disorders. Most people with functional movement disorders do not report a history of abuse, so it remains just one among many relevant risk factors to consider

    Functional movement disorder gender, age and phenotype study: a systematic review and individual patient meta-analysis of 4905 cases

    No full text
    : Functional movement disorder (FMD) is a common manifestation of functional neurological disorder presenting with diverse phenotypes such as tremor, weakness and gait disorder. Our current understanding of the basic epidemiological features of this condition is unclear. We aimed to describe and examine the relationship between age at onset, phenotype and gender in FMD in a large meta-analysis of published and unpublished individual patient cases. An electronic search of PubMed was conducted for studies from 1968 to 2019 according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Individual patient data were collected through a research network. We described the distribution of age of onset and how this varied by gender and motor phenotype. A one-stage meta-analysis was performed using multilevel mixed-effects linear regression, including random intercepts for country and data source. A total of 4905 individual cases were analysed (72.6% woman). The mean age at onset was 39.6 years (SD 16.1). Women had a significantly earlier age of onset than men (39.1 years vs 41.0 years). Mixed FMD (23.1%), tremor (21.6%) and weakness (18.1%) were the most common phenotypes. Compared with tremor (40.7 years), the mean ages at onset of dystonia (34.5 years) and weakness (36.4 years) were significantly younger, while gait disorders (43.2 years) had a significantly later age at onset. The interaction between gender and phenotype was not significant. FMD peaks in midlife with varying effects of gender on age at onset and phenotype. The data gives some support to 'lumping' FMD as a unitary disorder but also highlights the value in 'splitting' into individual phenotypes where relevant

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore