16 research outputs found

    Handbook of Enhanced Spectroscopy

    No full text
    International audienceSpectroscopy is the characterization of matter through themeasure-ment of its interaction with light. The discovery by Isaac Newton ofthe sprawl of colors (dispersion) of sunlight by a prism has beenthe foundation of further developments of spectroscopy. Joseph vonFraunhofer used a diffraction grating for the same goal and observeddark bands in the spectrum of the sunlight. Walter N. Hartleycontributed to make the link between the position of atoms in theperiodic table and the observed bands in spectra. The invention ofthe spectroscopy has induced a fantastic advanced in knowledgeof universe due to its ability to determine the composition of thesun and stars. It has been then possible to analyze not only remotematerials, but also the light sources, gas, and liquids in laboratoriessince the end of the nineteenth century. The twentieth centurysaw the development of new spectroscopic techniques and theimprovement of the sensitivity of the devices in order to detectsmaller and smaller concentrations of chemical components. Thebasis of spectroscopy is given considering the distinction betweenelastic and inelastic scattering, before investigating the way toimprove the sensitivity of devices by field enhancement

    Investigation of aromatic hydrocarbon inclusion into cyclodextrins by Raman spectroscopy and thermal analysis

    No full text
    Among various cavitand molecules, cyclodextrins are extensively studied due to their ability to form host-guest complexes with small hydrophobic molecules. Aiming to explore cyclodextrin implementation on the scopes related to the environmental pollution monitoring or remediation, extensive studies for understanding the cyclodextrin-based host-guest complex formation with selected targeted substances are conducted. In this context, two polycyclic aromatic hydrocarbons, naphthalene and fluoranthene as well as toluene as a member of volatile organic compounds, were studied regarding their ability to encapsulate into cyclodextrin cavities. Synthesised complexes were examined by thermogravimetric analysis combined with Raman spectroscopy. The obtained results demonstrated that the size between targeted molecules and the cyclodextrin cavities strongly correlates with its ability to engage in complexation. Thus, this latter parameter plays an important role in the inclusion complex formation as well as in the strength of the interaction between the molecules

    New Mechanism for Long Photo‐Induced Enhanced Raman Spectroscopy in Au Nanoparticles Embedded in TiO 2

    Get PDF
    International audienceThe photo-induced enhanced Raman spectroscopy (PIERS) effect is a phenomenon taking place when plasmonic nanoparticles deposited on a semiconductor are illuminated by UV light prior to Raman measurement. Results from the literature show that the PIERS effect lasts for about an hour. The proposed mechanism for this effect is the creation of oxygen vacancies in the semiconductor that would create a path for charge transfer between the analyte and the nanoparticles. However, this hypothesis has never been confirmed experimentally. Furthermore, the tested structure of the PIERS substrate has always been composed of plasmonic nanoparticles deposited on top of the semiconductor. Here, gold nanoparticles co-deposited with porous TiO2 are used as a PIERS substrate. The deposition process confers the nanoparticles a unique position half buried in the nanoporous semiconductor. The resulting PIERS intensity is among the highest measured until now but most importantly the duration of the effect is significantly longer (at least 8 days). Cathodoluminescence measurements on these samples show that two distinct mechanisms are at stake for co-deposited and drop-casted gold nanoparticles. The oxygen vacancies hypothesis tends to be confirmed for the latter, but the narrowing of the depletion zone explains the long PIERS effect

    Diazonium Salt-Based Surface-Enhanced Raman Spectroscopy Nanosensor: Detection and Quantitation of Aromatic Hydrocarbons in Water Samples

    No full text
    International audienceHere, we present a surface-enhanced Raman spectroscopy (SERS) nanosensor for environmental pollutants detection. This study was conducted on three polycyclic aromatic hydrocarbons (PAHs): benzo[a] pyrene (BaP), fluoranthene (FL), and naphthalene (NAP). SERS substrates were chemically functionalized using 4-dodecyl benzenediazonium-tetrafluoroborate and SERS analyses were conducted to detect the pollutants alone and in mixtures. Compounds were first measured in water-methanol (9:1 volume ratio) samples. Investigation on solutions containing concentrations ranging from 10(-6) g L-(1) to 10(-3) g L-1 provided data to plot calibration curves and to determine the performance of the sensor. The calculated limit of detection (LOD) was 0.026 mg L-1 (10(-7) mol L-1) for BaP, 0.064 mg L-1 (3.2 x 10(-7) mol L-1) for FL, and 3.94 mg L-1 (3.1 x 10(-5) mol L-1) for NAP, respectively. The correlation between the calculated LOD values and the octanol-water partition coefficient (K-ow) of the investigated PAHs suggests that the developed nanosensor is particularly suitable for detecting highly non-polar PAH compounds. Measurements conducted on a mixture of the three analytes (i) demonstrated the ability of the developed technology to detect and identify the three analytes in the mixture; (ii) provided the exact quantitation of pollutants in a mixture. Moreover, we optimized the surface regeneration step for the nanosensor

    High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers

    No full text
    International audienceIn this paper, we present the development of a highly sensitive, specific and reproducible nanobiosensor to detect one specific liver cancer biomarker, the manganese super oxide dismutase (MnSOD). The high sensitivity and reproducibility was reached by using SERS on gold nanostructures (nanocylinders and coupled nanorods) produced by electron-beam lithography (EBL). The specificity of the detection was provided by the use of a specific aptamer with high affinity to the targeted protein as a recognition element. With such a sensor, we have been able to observe the SERS signal of the MnSOD at concentrations down to the nM level and to show with negative control that this detection is specific due to the use of the aptamer. This latter issue has allowed us to detect the MnSOD in different body fluids (serum and saliva) at concentrations in the nM range. We have then demonstrated the effectiveness of our SERS nanobiosensor using aptamer as a bioreceptor for the detection of disease biomarker at low concentration and in complex fluids

    Evidence of the Grafting Mechanisms of Diazonium Salts on Gold Nanostructures

    No full text
    International audienceGold nanostructures (GNS) were chemically functionalized using four different diazonium salts: benzene-diazonium-tetrafluoroborate (DS), 4-decylbenzene-diazonium-tetrafluoroborate (DS-C10H21), 4-carboxybenzene-diazonium-tetrafluoroborate (DS-COOH), and 4-(aminoethyl)-benzene-diazonium-tetrafluoroborate (DS-(CH2)2NH2). Effective chemical grafting on GNS was shown by surface-enhanced Raman spectroscopy (SERS); aromatic ring deformations in the range of 1570–1591 cm–1 are of particular interest. The very strong band observed around 1075 cm–1, related to CH in-plane bending for mono- and para-substituted benzenes (coupled with ring-N stretching mode), provided further irrefutable evidence of the grafting. SERS enhancement of these two bands ascertains the perpendicular orientation of the aromatic rings on the GNS. X-ray photoelectron spectroscopy (XPS) analyses of chemically grafted flat gold surfaces suggest azophenyl radical pathways when using DS, DS-(CH2)2-NH2, or DS-C10H21. It was shown that coating at the interface is the result of a Au–N covalent bond; growth of the layers is via N═N. These XPS results agree with those provided by SERS without excluding the aryl radical pathways. For DS-COOH, the results provided by SERS, XPS, and density functional theory calculations show (i) effective chemical grafting of the GNS via a covalent bond between gold and carboxylate forms and (ii) growth via multilayers in the meta position between aromatic rings through either N═N or C–C bonds

    Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    No full text
    International audienceOptimum amplification in surface enhanced Raman scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the localized surface plasmon resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80 nm, to obtain highest SERS. Such discrepancy is usually attributed to a near-field (NF) to far-field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multiwavelength-excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10 nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180 nm diameter, followed by a decrease and a pronounced skewness
    corecore