177 research outputs found

    Synchronized turbo apoptosis induced by cold-shock

    Get PDF
    In our research on the role of apoptosis in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE), we aim to evaluate the effects of early and late apoptotic cells and blebs on antigen presenting cells. This requires the in vitro generation of sufficiently large and homogeneous populations of early and late apoptotic cells. Here, we present a quick method encountered by serendipity that results in highly reproducible synchronized homogeneous apoptotic cell populations. In brief, granulocytic 32Dcl3 cells are incubated on ice for 2 h and subsequently rewarmed at 37°C. After 30–90 min at 37°C more than 80–90% of the cells become early apoptotic (Annexin V positive/propidium iodide negative). After 24 h of rewarming at 37°C 98% of the cells were late apoptotic (secondary necrotic; Annexin V positive/propidium iodide positive). Cells already formed apoptotic blebs at their cell surface after approximately 20 min at 37°C. Inter-nucleosomal chromatin cleavage and caspase activation were other characteristics of this cold-shock-induced process of apoptosis. Consequently, apoptosis could be inhibited by a caspase inhibitor. Finally, SLE-derived anti-chromatin autoantibodies showed a high affinity for apoptotic blebs generated by cold-shock. Overall, cold-shock induced apoptosis is achieved without the addition of toxic compounds or antibodies, and quickly leads to synchronized homogeneous apoptotic cell populations, which can be applied for various research questions addressing apoptosis

    Effects of patient selection on the applicability of results from a randomised clinical trial (EORTC 10853) investigating breast-conserving therapy for DCIS

    Get PDF
    Selection of patients for randomised clinical trials may have a large impact on the applicability of the study results to the general population presenting the same disorder. However, clinical characteristics and outcome data on non-entered patients are usually not available. The effects of patient selection for the EORTC 10853 trial investigating the role of radiotherapy in breast conserving therapy for ductal carcinoma in situ have been studied, in an analysis of all patients treated for ductal carcinoma in situ in five participating institutes. The reasons for not entering patients were evaluated and treatment results of the randomised patients were compared to those not entered. A total of 910 patients were treated for ductal carcinoma in situ. Of these, 477 (52%) were ineligible, with the size of the lesion being the main reason for ineligibility (30% of all ductal carcinoma in situ). Of the 433 eligible patients, 278 (64%) were randomised into the trial. The main reasons for non-entry of eligible patients were either physicians' preference for one of the treatment arms (26%) or patients' refusal (9%). These percentages showed significant variation among the institutes. At 4 years follow-up, those patients not entered in the trial and treated with local excision and radiotherapy, had higher local recurrence rates than the patients randomised in the trial and treated with the same approach, (17 vs 2%, P=0.03). The patients treated with local excision alone had equal local recurrence rates (11% in both groups). Selection of patients may explain the differences in outcome of the randomised patients, and those not-entered. Thus, the results of this trial may not be applicable to all patients with ductal carcinoma in situ

    Human Rights Shaming Through INGOs and Foreign Aid Delivery

    Get PDF
    Does the ``shaming" of human rights violations influence foreign aid delivery decisions across OECD donor countries? We examine the effect of shaming, defined as targeted negative attention by human rights international nongovernmental organizations (INGOs), on donor decisions about how to deliver bilateral aid. We argue that INGO shaming of recipient countries leads donor governments, on average, to ``bypass" the recipient government in favor of non-state aid delivery channels, including international and local NGOs and international organizations (IOs). However, we expect this relationship to be conditional on a donor country's position in the international system. Minor power countries have limited influence in global affairs and are therefore more able to centrally promote human rights in their foreign policy. Major power countries, on the other hand, shape world politics and often confront ``realpolitik" concerns that may require government-to-government aid relations in the presence of INGO shaming. We expect aid officials of minor donor countries to be more likely to condition aid delivery decisions on human rights shaming than their counterparts of major donor countries. Using compositional data analysis, we test our argument using originally collected data on human rights shaming events in a time-series cross-sectional framework from 2004 to 2010. We find support for our hypotheses: On average, OECD donor governments increase the proportion of bypass when INGOs shame the recipient government. When differentiating between donor types we find that this finding holds for minor but not for major powers. These results add to both our understanding of the influences of aid allocation decision-making and our understanding of the role of INGOs on foreign-policy

    Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome

    Get PDF
    Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed

    Soluble CD59 Expressed from an Adenovirus In Vivo Is a Potent Inhibitor of Complement Deposition on Murine Liver Vascular Endothelium

    Get PDF
    Inappropriate activation of complement on the vascular endothelium of specific organs, or systemically, underlies the etiology of a number of diseases. These disorders include atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, atherosclerosis, age-related macular degeneration, diabetic retinopathy, and transplant rejection. Inhibition of the terminal step of complement activation, i.e. formation of the membrane attack complex, using CD59 has the advantage of retaining the upstream processes of the complement cascade necessary for fighting pathogens and retaining complement's crucial role in tissue homeostasis. Previous studies have shown the necessity of membrane targeting of soluble CD59 in order for it to prove an effective inhibitor of complement deposition both in vitro and in vivo. In this study we have generated an in vivo model of human complement activation on murine liver vascular endothelium. This model should prove useful for the development of anti-complement therapies for complement-induced pathologies of vascular endothelium. Using this model, we have demonstrated the viability of a non membrane-targeted soluble CD59 to significantly inhibit complement deposition on the endothelium of murine liver vasculature when expressed in vivo from an adenovirus. This result, unanticipated based on prior studies, suggests that the use of non membrane-targeted sCD59 as an anti-complement therapy be re-visited

    Autonomic Modulation and Health-Related Quality of Life among Schizophrenic Patients Treated with Non-Intensive Case Management

    Get PDF
    Schizophrenia is associated with autonomic dysfunction and this may increase cardiovascular mortality. Past studies on autonomic modulation of schizophrenic patients focused on inpatients rather than individuals in a community setting, especially those receiving non-intensive case management (non-ICM). Besides, autonomic modulation and its association with health-related quality of life (HRQoL) in this population remain unexplored.A total of 25 schizophrenic patients treated by non-ICM and 40 healthy volunteers were matched by age, gender and body mass index; smokers were excluded. Between the two groups, we compared the individuals' 5 min resting assessments of heart rate variability and their HRQoL, which was measured using EuroQoL-5D (EQ-5D). Patients with schizophrenia were assessed for psychopathology using the Positive and Negative Syndrome Scale for Schizophrenia (PANSS). We examined the relationship between heart rate variability measurements, HRQoL scores, PANSS scores, and other clinical variables among the schizophrenic patients treated by non-ICM.Compared to the controls, patients with schizophrenia showed a significant impairment of autonomic modulation and a worse HRQoL. Cardiovagal dysfunction among the schizophrenic patients could be predicted independently based on lower educational level and more negative symptoms. Sympathetic predominance was directly associated with anticholinergics use and EQ-5D using a visual analogue scale (EQ-VAS).Patients with schizophrenia treated by non-ICM show a significant impairment of their autonomic function and HRQoL compared to the controls. Since the sympathovagal dysfunction is associated with more negative symptoms or higher VAS score, the treatment of the negative symptoms as well as the monitoring of HRQoL might help to manage cardiovascular risk among these individuals. In addition, EQ-VAS scores must be interpreted more cautiously in such a population

    Rapid KRAS, EGFR, BRAF and PIK3CA Mutation Analysis of Fine Needle Aspirates from Non-Small-Cell Lung Cancer Using Allele-Specific qPCR

    Get PDF
    Endobronchial Ultrasound Guided Transbronchial Needle Aspiration (EBUS-TBNA) and Trans-esophageal Ultrasound Scanning with Fine Needle Aspiration (EUS-FNA) are important, novel techniques for the diagnosis and staging of non-small cell lung cancer (NSCLC) that have been incorporated into lung cancer staging guidelines. To guide and optimize treatment decisions, especially for NSCLC patients in stage III and IV, EGFR and KRAS mutation status is often required. The concordance rate of the mutation analysis between these cytological aspirates and histological samples obtained by surgical staging is unknown. Therefore, we studied the extent to which allele-specific quantitative real-time PCR with hydrolysis probes could be reliably performed on EBUS and EUS fine needle aspirates by comparing the results with histological material from the same patient. We analyzed a series of 43 NSCLC patients for whom cytological and histological material was available. We demonstrated that these standard molecular techniques can be accurately applied on fine needle cytological aspirates from NSCLC patients. Importantly, we show that all mutations detected in the histological material of primary tumor were also identified in the cytological samples. We conclude that molecular profiling can be reliably performed on fine needle cytology aspirates from NSCLC patients

    In Vitro and In Vivo Antagonism of a G Protein-Coupled Receptor (S1P3) with a Novel Blocking Monoclonal Antibody

    Get PDF
    Background: S1P 3 is a lipid-activated G protein-couple receptor (GPCR) that has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. Currently, there are no available high-affinity, subtypeselective drug compounds that can block activation of S1P3. We have developed a monoclonal antibody (7H9) that specifically recognizes S1P3 and acts as a functional antagonist. Methodology/Principal Findings: Specific binding of 7H9 was demonstrated by immunocytochemistry using cells that over-express individual members of the S1P receptor family. We show, in vitro, that 7H9 can inhibit the activation of S1P3mediated cellular processes, including arrestin translocation, receptor internalization, adenylate cyclase inhibiton, and calcium mobilization. We also demonstrate that 7H9 blocks activation of S1P3 in vivo, 1) by preventing lethality due to systemic inflammation, and 2) by altering the progression of breast tumor xenografts. Conclusions/Significance: We have developed the first-reported monoclonal antibody that selectively recognizes a lipidactivated GPCR and blocks functional activity. In addition to serving as a lead drug compound for the treatment of sepsi
    corecore