442 research outputs found
Limits and opportunities of risk analysis application in railway systems
Risk Analysis is a collection of methods widely used in many industrial sectors. In the transport sector it has been particularly used for air transport applications. The reasons for this wide use are well-known: risk analysis allows to approach the safety theme in a stochastic - rather than deterministic - way, it forces to break down the system in sub-components, last but not least it allows a comparison between solutions with different costs, introducing de facto an element of economic feasibility of the project alternatives in the safety field. Apart from the United Kingdom, in Europe the application of this tool in the railway sector is relatively recent. In particular Directive 2004/49/EC (the "railway safety directive") provides for compulsory risk assessment in relation to the activities of railway Infrastructure Managers (IMs) and of Railway
Undertakings (RUs). Nevertheless the peculiarity of the railway system - in which human, procedural, environmental and technological components have a continuous interchange and in which human responsibilities and technological functions often overlap - induced the EC to allow wide margins of subjectivity in the interpretation of risk assessment. When enacting Commission Regulation (EC) No 352/2009 which further regulates this subject, a risk assessment is considered positive also if the IM or RU declare to take safety measures widely used in normal practice. The paper shows the results of a structured comparative analysis of the rail sector and other industrial sectors, which illustrate the difficulties, but also the opportunities, of a transfer towards the railway system of the risk analysis methods currently in use for the other systems
Biocompatible electrospun polycaprolactone-polyaniline scaffold treated with atmospheric plasma to improve hydrophilicity
Conductive polymers (CPs) have recently been applied in the development of scaffolds for tissue engineering applications in attempt to induce additional cues able to enhance tissue growth. Polyaniline (PANI) is one of the most widely studied CPs, but it requires to be blended with other polymers in order to be processed through conventional technologies. Here, we propose the fabrication of nanofibers based on a polycaprolactone (PCL)-PANI blend obtained using electro-spinning technology. An extracellular matrix-like fibrous substrate was obtained showing a good stability in the physiological environment (37 °C in PBS solution up 7 days). However, since the high hydrophobicity of the PCL-PANI mats (133.5 ± 2.2°) could negatively affect the biological re-sponse, a treatment with atmospheric plasma was applied on the nanofibrous mats, obtaining a hydrophilic surface (67.1 ± 2°). In vitro tests were performed to confirm the viability and the physi-ological-like morphology of human foreskin fibroblast (HFF-1) cells cultured on the plasma treated PCL-PANI nanofibrous scaffolds
Evaluation of Variability in the Sweet Orange Germplasm through Next Generation Clonal Fingerprinting
The great phenotypic variability characterizing the sweet orange [Citrus sinensis(L.) Osbeck] germplasm arises from spontaneous bud mutations, causing a diversification into major groups (common, Navel and blood oranges). A huge divergence also occurred within each varietal group. The genetic basis of such variability, also including nutritional and qualitative traits (ripening time, colour, fruit shape, acidity, sugars), is currently uncharacterized, and therefore not exploitable. With the aim of describing the somatic mutation events in the sweet orange group a deep-sequencing of 20 Italian and foreign accessions was performed by Illumina platform, allowing the identification of single nucleotide polymorphisms (SNPs), structural variants (SVs) and large deletions, specific to each varietal group or clone-specific. A subset of SNPs used for the design of two 384 SNP - GoldenGate Assays allowed to genotype 225 CREA sweet orange accessions. The developed markers represent the first reliable molecular tools able to unambiguously fingerprint each somatic mutant. Moreover, they might be used to associate mutations with phenotypic traits, and are a powerful tool for traceability. By using the GoldenGate assay, we have been able to fingerprint several blood orange clones starting from DNAs isolated from leaves or juice. These tools will potentially provide the consumer with a guarantee on the quality and origin of juices, avoiding eventual frauds
Improving the energy performance of a 3D-printed wall using recycled material
In this paper, we present the results of a preliminary experimental campaign conducted on
a 3D-printed wall 40 cm thick made of three concrete walls, connected by metal pins and concrete
curbs to form three types of cavity - one rectangular and two triangular. The tests were performed in
a climatic chamber at the Pietro Pisa Laboratory of the University of Brescia. The wall thermal
performance has been evaluated by examining four scenarios in which the cavities have been filled
with insulating material made of cellulose-based recycled flakes characterized by a declared thermal
conductivity of 0.038 W/mK. The wall thermal transmittance U is measured based on the
temperatures and heat fluxes measured through the structure. Based on the degree of filling, the wall
thermal transmittance ranges between 1.58 W/m2K for the wall without insulation, and 0.28 W/m2K
for the configuration with all cavities completely filled
Ecology and potential functions of plant-associated microbial communities in cold environments
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions
Exploring the effects of hyperbaric storage on the optical, structural, mechanical and diffusional properties of food packaging materials
The effect of hyperbaric storage (HS) on food packaging materials was evaluated. PA/PE, PP/EVOH/PE, PET and PLA pouches filled with hydroethanolic simulant (D1) were stored at 0.1 and 200 MPa for up to 35 days and analyzed for optical, structural, mechanical and diffusional properties. HS weakened PLA seals, which easily failed after 7 days releasing the simulant. Both PET and PLA films swelled during HS, reducing PET physical ageing and PLA crystallinity. These structural effects caused PET and PLA mechanical properties to vary during HS, and a slight WVTR increase in PLA. Optical, structural and mechanical properties of multi-material films did not change upon HS. Nevertheless, both PA/PE and PP/EVOH/PE released critical amounts of adhesives after 7 and 35 days under pressure, respectively. Results indicate the critical role of the packaging material of foods intended for HS, and the need for its careful selection in future studies on the topic
Shelf Life Extension and Nutritional Quality Preservation of Sour Cherries through High Pressure Processing
The present study assessed the effectiveness of high pressure processing (HPP) for the quality maintenance of pitted sour cherries, with special regard to microbial stabilization and the maintenance of color and of chemical–nutritional properties. The HPP treatment (600 MPa for 3 min at 4 °C) was effective at minimizing the initial microbial load, which remained at negligible levels throughout 5 months of refrigerated storage. The color and total phytochemical content of sour cherries were not influenced by the HPP treatment and were maintained at levels comparable with the fresh product for 3 months of refrigerated storage. For longer storage periods, the typical red color decreased, in agreement with the content of total anthocyanins, which showed a significant decrease (up to 65% after 5 months). The antioxidant activity, measured by the ABTS and DPPH assays, was not affected by the HPP treatment, but slightly reduced during refrigerated storage. The study suggests that HPP may be exploited to extend the shelf life, while maintaining the fresh-like features of sour cherries, thus offering an alternative option to current preservation techniques (based on freezing or heating) commonly applied to this product
On the performance of a pilot hybrid constructed wetland for stormwater recovery in Mediterranean climate
Abstract
The overall efficiency of a pilot-scale hybrid constructed wetland (H-CW), located on a retail store's parking area in Eastern Sicily, for alternative treatment of stormwater runoff and of sequential batch reactor (SBR) effluent was evaluated. Experimental activities were focused on system performances, including wastewater (WW) quality and hydraulic monitoring. System design, macrophyte growth and seasonal factors influenced the pilot plant performance. Very high removal efficiency for microbial indicators were reported within the subsurface horizontal flow unit (HF), playing a strategic role for Clostridium perfringens. The algal growth occurred in the free water surface (FWS) unit and inhibited removal efficiencies of total suspended solids (TSS), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD), impairing water quality. The whole H-CW showed good efficiency in trace metals removal, especially for Pb, Zn, and Cu. Preliminary results suggested the reliability of the H-CW technology in decentralised water treatment facilities for enhancing water recovery and reuse
Coexistence of orbital and quantum critical magnetoresistance in FeSeS
The recent discovery of a non-magnetic nematic quantum critical point (QCP)
in the iron chalcogenide family FeSeS has raised the prospect of
investigating, in isolation, the role of nematicity on the electronic
properties of correlated metals. Here we report a detailed study of the normal
state transverse magnetoresistance (MR) in FeSeS for a series of
S concentrations spanning the nematic QCP. For all temperatures and
\textit{x}-values studied, the MR can be decomposed into two distinct
components: one that varies quadratically in magnetic field strength
and one that follows precisely the quadrature scaling form
recently reported in metals at or close to a QCP and characterized by a
\textit{H}-linear MR over an extended field range. The two components evolve
systematically with both temperature and S-substitution in a manner that is
determined by their proximity to the nematic QCP. This study thus reveals
unambiguously the coexistence of two independent charge sectors in a quantum
critical system. Moreover, the quantum critical component of the MR is found to
be less sensitive to disorder than the quadratic (orbital) MR, suggesting that
detection of the latter in previous MR studies of metals near a QCP may have
been obscured.Comment: 19 pages (including Supplemental Material), 12 figure
Transitions from the Quantum Hall State to the Anderson Insulator: Fa te of Delocalized States
Transitions between the quantum Hall state and the Anderson insulator are
studied in a two dimensional tight binding model with a uniform magnetic field
and a random potential. By the string (anyon) gauge, the weak magnetic field
regime is explored numerically. The regime is closely related to the continuum
model. The change of the Hall conductance and the trajectoy of the delocalized
states are investigated by the topological arguments and the Thouless number
study.Comment: 10 pages RevTeX, 14 postscript figure
- …