402 research outputs found

    Enhancing the Fuel Properties of Spent Coffee Grounds through Hydrothermal Carbonization: Output Prediction and Post-Treatment Approaches

    Get PDF
    The reuse potential for the large annual production of spent coffee grounds (SCGs) is underexploited in most world regions. Hydrochars from SCGs produced via hydrothermal carbonization (HTC) have been recognized as a promising solid fuel alternative. To increase demand, optimization of the HTC and two post-treatment processes, washing and agglomeration, were studied to improve hydrochar in terms of energetic properties, minimizing unwanted substances, and better handling. HTC experiments at three scales (1–18.75 L) and varying process conditions (temperature T (160–250 °C), reaction time t (1–5 h), and solid content %So (6–20%) showed that the higher heating value (HHV) can be improved by up to 46%, and most potential emissions of trace elements from combustion reduced (up to 90%). The HTC outputs (solid yield—SY, HHV, energy yield—EY) were modeled and compared to published genetic programming (GP) models. Both model types predicted the three outputs with low error (<15%) and can be used for process optimization. The efficiency of water washing depended on the HTC process temperature and type of aromatics produced. The furanic compounds were removed (69–100%; 160 °C), while only 34% of the phenolic compounds (240 °C) were washed out. Agglomeration of both wet SCG and its hydrochar is feasible; however, the finer particles of washed hydrochar (240 °C) resulted in larger-sized spherical pellets (85% > 2000–4000 μm) compared to SCGs (only 4%)

    Bevacizumab in the treatment of NSCLC: patient selection and perspectives

    Get PDF
    Non-small-cell lung cancer (NSCLC) represents about 85% of all lung cancers, and more than half of NSCLCs are diagnosed at an advanced stage. Chemotherapy has reached a plateau in the overall survival curve of about 10 months. Therefore, in last decade novel targeted approaches have been developed to extend survival of these patients, including antiangiogenic treatment. Vascular endothelial growth factor (VEGF) signaling pathway plays a dominant role in stimulating angiogenesis, which is the main process promoting tumor growth and metastasis. Bevacizumab (bev; Avastin®) is a recombinant humanized monoclonal antibody that neutralizes VEGF’s biologic activity through a steric blocking of its binding with VEGF receptor. Currently, bev is the only antiangiogenic agent approved for the first-line treatment of advanced or recurrent nonsquamous NSCLC in “bev-eligible� patients. The ineligibility to receive bev is related to its toxicity. In the pivotal trials of bev in NSCLC, fatal bleeding events including pulmonary hemorrhage were observed with rates higher in the chemotherapy-plus-bev group. Therefore, in order to reduce the incidence of severe pulmonary hemorrhage, numerous exclusion criteria have been characteristically applied for bev such as central tumor localization or tumor cavitation, use of anticoagulant therapy, presence of brain metastases, age of patients (elderly). Subsequent studies designed to evaluate the safety of bev have demonstrated that this agent is safe and well tolerated even in those patients subpopulations excluded from pivotal trials. This review outlines the current state-of-the-art on bev use in advanced NSCLC. It also describes patient selection and future perspectives on this antiangiogenic agent

    Total nut, tree nut, and peanut consumption and metabolic status in southern Italian adults

    Get PDF
    Background: Nut consumption has been associated with cardio-metabolic health benefits. However, studies conducted in the Southern Italian population, where adherence to the Mediterranean diet has been reported being relatively high, are rather scarce. The aim of this study was to test the association between consumption of total and specific types of nuts and metabolic status among adults living in Sicily, Southern Italy. Methods: Demographic and dietary characteristics of 2044 adults living in Southern Italy were analyzed. Multivariate logistic regression analyses were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) of the association between nut consumption and metabolic status adjusting for potential confounding factors. Results: The energy-adjusted model revealed that higher nut intake was inversely associated with occurrence of hypertension, type-2 diabetes, and dyslipidemia. However, the association did not remain significant for the latter after adjusting for the main background characteristics, while an inverse association was stably confirmed for hypertension (OR = 0.61, 95% CI: 0.46–0.80 and OR = 0.44, 95% CI: 0.26–0.74, respectively) even after adjusting for adherence to the Mediterranean diet. Among individual nut types, most of the associations were null except for higher almond intake, which was inversely associated with occurrence of hypertension (OR = 0.70, 95% CI: 0.49–0.99). Conclusions: Higher nut consumption is associated with overall better metabolic status in individuals living in the Mediterranean area

    Modeling the water demand on farms

    Get PDF
    The decreasing availability of water caused by depletion and climate change combined with a growing world population requires the productive use of water now and in the future. The young researcher group "AgroHyd" at the Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB) is currently modeling the water demand for agricultural processes at the farm scale and developing indicators to link the hydrological and agricultural perspectives. The aim of the group is to increase productivity in agriculture by raising water productivity in plant production and livestock farming. The effects of various agronomic measures, individual and in combination, on water productivity are assessed using several indicators. Scenarios of agricultural measures, climate and diets are used to test to what extent the water demand for food production will increase due to growing global change in different regions of the world

    Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage

    Get PDF
    Although many studies have investigated the hydrothermal transformation of feedstock biomass, little is known about the stability of the compounds present in the process liquid after the carbonization process is completed. The physicochemical characteristics of hydrothermal carbonization (HTC) liquid products may change over storage time, diminishing the amount of desired products or producing unwanted contaminants. These changes may restrict the use of HTC liquid products. Here, we investigate the effect of storage temperature (20, 4, and −18 °C) and time (weeks 1-12) on structural and compositional changes of selected organic compounds and physicochemical characteristics of the process liquid from the HTC of digested cow manure. ANOVA showed that the storage time has a significant effect on the concentrations of almost all of the selected organic compounds, except acetic acid. Considerable changes in the composition of the process liquid took place at all studied temperatures, including deep freezing at −18 °C. Prominent is the polymerization of aromatic compounds with the formation of precipitates, which settle over time. This, in turn, influences the inorganic compounds present in the liquid phase by chelating or selectively adsorbing them. The implications of these results on the further processing of the process liquid for various applications are discussed
    • …
    corecore