34 research outputs found

    Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report

    Get PDF
    The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate

    Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study

    Get PDF
    A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients

    Peatland methane emissions and influencing environmental factors in the southern fringe of the discontinuous permafrost zone, Fort Simpson, Northwest Territories

    No full text
    A static chamber technique was used to measure methane emissions in July and August, 1995 from peatland sites in the Fort Simpson area, Northwest Territories, at the southern fringe of the discontinuous permafrost zone. Sites were classified ecologically and geomorphologically, and water table and temperature regimes were monitored.Methane emissions ranged from -3.3 to 1144.2 mg/msp2cdot sp2 cdotd, from raised frozen sites to pond sites, respectively, similar to emissions recorded from other boreal regions. Water table was the strongest predictor of CHsb4 sb4 emission. Although peat temperature is significantly correlated to methane flux, it did not significantly improve the flux-water table relationship. Methane storage within the saturated portion of the peat profile ranged from 0.2 to 4.2 g/msp2 sp2 over depths ranging from 30 to 76 cm, and did not play a large role in surficial emissions. The zone immediately above and below the water table appears to regulate methane diffusion to the surface. Residence times (storage/flux) ranged from 12 to 30 days in poor fens, and from 6 to 5789 days in fens.Ranges and mean fluxes of methane were determined according to landform and water table position. Based on the geomorphology of the area, overall flux determined for the Fort Simpson area, map NTS 95H, NW1/4, is estimated to be 19 mg/msp2cdot sp2 cdotd
    corecore