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Abstract: A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat
conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing
difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained
ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation
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methodologies. Deep neural networks (DNN) are potent machines for learning that generalize
nonlinear situations. The objective of this article is to propose a novel investigation of deep learning
(DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of
207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to
the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate
biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus
use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks
(RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office
and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with
the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients.
Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification.
Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in
DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent
CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the
risk of CVD/stroke in DFI patients.

Keywords: diabetics; diabetic’s foot infection; cardiovascular/stroke risk stratification; deep learning;
AI bias

1. Introduction

Foot ulcers are the leading cause of morbidity and amputation in people with diabetes.
These complications also contribute to significant healthcare expenditure, as indicated by
the fact that 20 to 40% of healthcare resources are spent on diabetic feet associated with
diabetes [1,2]. As per the World Health Organization (WHO), diabetic foot syndrome (DFS)
is described as “ulceration of the foot (distally from the ankle and including the ankle)
linked with neuropathy and various grades of ischemia and infection” [3]. It is a severe
long-term complication of diabetes mellitus (DM) that can lead to disability, amputations,
cardiovascular diseases, and a lower quality of life [4,5].

In the United States, approximately 73,000 lower-extremity amputations are carried
out each year due to diabetes [6]. Foot ulceration is the primary and sole factor that
causes 80% of these complications [7,8]. The existence of foot ulceration is believed to be
a significant risk factor for morbidity, death, and disability. This notion is confirmed by
the fact that the diabetic condition is responsible for approximately 80% of nontraumatic
amputations and that 85% of these amputations are preceded by foot ulceration [9]. It
is thought that 15% of diabetics will get an ulcer on one of their lower limbs at some
point during their disease [10]. A connection between a diabetic foot infection (DFI) and
cardiovascular disease (CVD) has been discovered by several investigations [11–13]. DFI is
an indicator of diabetes, and when active and uncontrolled, raises the risk of CVD [14–16].

The greatest risk factors for coronary heart disease (CHD) and diabetes include obe-
sity, high blood pressure, and high blood cholesterol [17,18]. The diabetic foot ulcer
(DFU) disease also causes inflammatory reactions, which can contribute to the develop-
ment of atherosclerosis, promoting coronary artery disease (CAD), and the worsening of
CVD [19–23]. Multiple studies relate more advanced stages of a DFI to more severe forms
of atherosclerotic cardiovascular disease (ASCVD) [15,23–25]. As a result, a DFI contributes
to the development of CVD. It is essential to understand the connection between a DFI and
CVD to reduce the risk of heart attacks, cardiovascular events (CVE), and stroke [9,26].

The development of calcifications and hemorrhagic formation characteristics, as seen
in a DFI, increases the risk of CVD [27,28]. Foot wound imaging is an essential procedure
in examining a DFI [29]. It is essential to use foot imaging to monitor changes in a DFI
to provide an accurate assessment of the prevalence of diabetics [30]. It is suggested that
coronary imaging be performed to determine the risk of developing CVD [23]. In addition,
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imaging of the coronary arteries is necessary to identify plaque in CAD [31,32]. Intravenous
ultrasonography (IVUS) and optical coherence tomography (OCT) are two examples of
effective imaging technologies that can be used to diagnose coronary plaque [33–35]. Since
surrogate markers are well established for CAD, such as carotid artery imaging and its
quantification, thus, there is a need for (i) accurate and computerized carotid plaque load
assessment, (ii) effective detection of atherosclerotic disease in DFI patients and (iii) CVD
risk stratification. All three aspects are essential to prevent DFI-driven CVD from becoming
severe. Hence, there is a need for the automated and early assessment of a diabetic foot
infection (DFI) and CVD severity in patients to avoid morbidity and mortality.

Artificial intelligence (AI) has fundamentally altered the dynamics of the healthcare
sector [36]. Machine Learning (ML) and Deep Learning (DL) algorithms have been imple-
mented in a variety of medical applications [37,38]. AI-based technologies are data-driven,
which means they make decisions based on information in databases, and have been used
to diagnose diabetes [39,40], liver [41], thyroid [42], and skin cancer [43], just to name a
few. Regarding CVD, the results show that there are nonlinear connections between the
input predictors and the cardiovascular outcomes [44,45]. In contrast to the statistical risk
estimation techniques currently in use [44,46], ML-based algorithms may use intricate quasi-
relationships among several risk predictors (or attributes) that are input simultaneously.

DL algorithms extract characteristics directly from the input data to generate predic-
tions. Some examples include the characterization of carotid wall tissue, the segmentation
of pictures, and the stratification of CVD risk [47,48]. It has also been established that DL
algorithms with convolution neural networks (CNNs) extract features, which can then be
used to train and test an ML classifier to obtain a final classification [49,50]. Recently, images
of the DFI foot wound have been utilized to predict the severity of the disease. It has been
demonstrated that algorithms based on ML and DL can accurately predict a DFI [29,30].
Because of this, it is conceivable for AI-based solutions to allow the analysis of image-based
diabetic foot inputs [51]. This is made possible by eliminating the demand for human
intervention. Several applications of carotid ultrasonography that use AI-based algorithms
have shown a lot of promise [52–54]. Thus, it means that these AI-based methods could be
used to evaluate a patient’s risk and treat both DFI and CVD disorders concurrently.

The usage of alternative imaging for the visualization of CAD helps in the categoriza-
tion of DFI patients into appropriate CVD risk categories [55–57]. This is because CAD
is easier to see with surrogate imaging. Thus, to gain a more in-depth insight into the
pathophysiology of diabetes, diabetes foot ulcer, and cardiovascular disease, this study
focuses on the use of low-cost carotid artery and diabetic foot ultrasound imaging. Using
techniques such as ML and DL, it is possible to identify patients who are at significant risk
of developing CVD complications [58]. To best analyze the above study, we have adopted
the search strategy and the distributions.

2. Search Strategy Using PRISMA Model

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
model (Figure 1) is used as the basis for the search method. PubMed, IEEE, and Google
Scholar are three databases that are used to search for and screen relevant papers. These
databases are searched with keywords such as “diabetic foot ulcer”, “diabetic foot disease”,
“diabetic foot infection”, “diabetes”, “CVD”, “diabetic foot ulcer and CVD”, “diabetic
foot ulcer and coronary artery disease”, “diabetic foot imaging”, “diabetes and carotid
imaging”, “artificial intelligence”, “artificial intelligence and CVD”, “machine learning and
CVD”, “deep learning and CVD”, “classifiers and CVD/stroke risk stratification”, and
“atherosclerotic plaque tissue classification”. There was a total of 324 papers located on
PubMed, and there were 548 articles initially selected from Google Scholar and IEEE. To
narrow the list down to just 872 articles, sophisticated criteria such as time and relevancy
were utilized. After considering whether or not to include them in this evaluation, a total
of 140 articles were narrowed down to the articles that made the final list. The following
are the three criteria that were used to exclude studies: (i) studies that did not relate in
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any way to our study objective, (ii) papers that did not contain useful information, and (iii)
studies that contained insufficient data in the studies. Following the elimination of 422, 103,
and 140 investigations (respectively denoted with the letters E1, E2, and E3), a final pool of
207 studies was chosen for the final analysis out of a total of 450 studies. Figure 2 depicts
the comprehensive screening procedure for the selection of the research paper.
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Statistical Distribution

Figure 2a shows the studies related to (i) diabetes and DFU, (ii) diabetes and CVD,
(iii) DFU and CVD, and diabetes and stroke. A number of the articles explain the role of
diabetics leading to the development of CVD in a patient. Figure 2b shows the distribution
of studies of AI with (i) Diabetics, (ii) DFU, and (iii) DFU and CVD. Each study had an
examination utilizing a feasibility analysis, which was followed by a cross-check using
scientific validation to guarantee that it came as close as possible to meeting our goals.
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3. Pathobiological Mechanisms of Diabetes, CVD, and Diabetic Foot

Figure 3 shows the biological link between diabetes mellitus and CVD. The survival
rate of diabetic patients is lower than that of nondiabetic patients [59]. In the context of CVD,
many studies showed that diabetes patients had 2–4 folds increased morbidity and mortality
rates than patients without diabetes mellitus (DM) [60]. In addition, DM patients suffering
from a foot infection have increased morbidity and mortality rates due to CVD about twice
as much compared to patients with DM without a foot disease. A paper published by
Pinto et al. [61] demonstrated an increased risk of CVD morbidity and mortality in DM
patients who experienced amputation due to a foot infection compared to DM patients
without a foot disease. Furthermore, in this study, authors also mentioned that patients
suffering from a DFI have higher levels of serum cholesterol, serum triglycerides, and
microalbuminuria or proteinuria, which are considered CV risk factors, compared with DM
patients without a foot infection [62–64]. Another recent five-year follow-up study showed
an increased risk of cerebrovascular events in DM patients with a foot disease compared
to DM patients without a foot disease [25]. The published works [62–64] demonstrate
that patients with a DFI are more prone to increased mortality and morbidity due to CVD
than diabetic patients without a foot disease. We, thus, hypothesize that longstanding
nonhealing ulcers in diabetes patients result in the activation of cytokine production, which
further damages the heart (stage A of Figure 3). Interestingly, supporting our hypothesis,
Jeffocate et al. [65], in their recent article, specified that patients with a DFI are more prone
to developing an inflammatory cascade of increased levels of proinflammatory cytokines
such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF- α), compared
with diabetic patients without foot diseases. Additionally, Weigelt et al. [66] also showed
that a DFI is responsible for the increase in circulation of acute phase cytokines such as
interleukin 6 (IL6) and C-reactive protein (CRP). The above evidence demonstrated that
immune activation in chronic nonhealing wounds is the key source of developing CV
risk factors in patients with DM (stage A of Figure 3). These increased proinflammatory
cytokines due to immune activation can trigger intracellular and extracellular reactive
oxygen species (ROS). Furthermore, (stage C of Figure 3) results in damage to endothelial
cells and causes the opening of inter endothelial junctions in a blood vessel [67]. Thus, this
damage in the endothelium layer results in the penetration of native low-density lipoprotein
(LDL) particles inside the tunica intimal layer, and this process is known as transcytosis [68].
Oxidative stress due to increased levels of ROS results in the formation of oxidized LDL
(OxLDL), formed by the peroxidation of phospholipid molecules on the surface of LDL
particles (Stage D of Figure 3). This process is known as lipid peroxidation [69]. Due to the
presence of cellular and humoral innate immunity, OxLDL is taken by the macrophage,
and this triggers the accumulation of many OxLDL inside the macrophage, resulting in the
development of foam cells (stage E of Figure 3) [70,71]. Excess accumulation of foam cells
increases the intake of more cholesterol, causing apoptosis and necrosis and progressing to
the formation of the necrotic core (stage F of Figure 3) [72,73]. These attract the aggregation
and adhesion of platelets, resulting in the development of atherosclerotic plaque (stage G
and H of Figure 3) [74].

The endogenous and exogenous metabolic disruptions concerning glucose metabolism
and their respective molecular repercussions contribute to an elevated risk of cardiovascular
disease in patients with diabetes. The revelation of the cardiovascular outcome trial (CVOT)
data and the discovery of certain unexpected advantages of major adverse cardiovascular
events (MACE) in these trials highlight that higher levels might have both direct and
indirect impacts. The metabolic balance is severely thrown off by normal glucose levels,
which exacerbates risk factors for cardiovascular disease.

In addition to these endogenous sources of abnormality, the process of glucose
metabolism, and exposure to external substances, such as those found in advanced gly-
cation end products (AGEs), may be amplified by factors in nutrition as well as in the
environment, leading to the activation of proatherogenic processes. Although a plethora of
research has exposed the deleterious effects of glucose on extra and intracellular character-
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istics, their long-term unfavorable effects, such as on glycation and epigenetic variables and
metabolic memory [75,76], have also been suggested to play crucial roles in CVD in diabetes
mellitus. Moreover, diabetes mellitus on the disturbance of lipid/lipoprotein metabolic
activities, in addition to their unique and independent effects, also interrelate with all these
glucose-driven processes. This is because the glycation of lipids and lipoproteins could alter
those species’ function and, through receptor for advanced glycation endproducts (RAGE)-
dependent mechanisms, may mediate and exacerbate cellular perturbation [76,77]. As a
result, diabetes mellitus is associated with an increased risk of immediate and long-term
effects triggered by glucose.
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As altered gene expression patterns and signaling pathways combine with immune
cells, blood vessel cells malfunction, increasing the risk of vascular and cardiovascular
disease in patients with certain metabolic abnormalities [26].
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Vascular Complications in Diabetes Mellitus

Vascular abnormalities in diabetes are caused by a state of chronic hyperglycemia [78].
These difficulties can develop in large blood arteries, characterized by diabetic macroan-
giopathy, and in small blood vessels, characterized by diabetic microangiopathy [78]. Such
vascular irregularities are due to the irrevocable glycation of proteins that occurs nonenzy-
matically, as well as changes in the cellular redox potential. Elevation in oxidative stress
and the condition of inflammation lead to the development of endothelial dysfunction and
a state of increased hypercoagulability.

The resolution of inflammation is hampered in diabetic patients, which correlates to
the increased levels of TNF-, IL-6, and other proinflammatory cytokines in these patients, as
well as to the development and progression of nephropathy and atherosclerosis, and other
complications of diabetes [79]. Recent research has demonstrated that proresolving lipid
mediators, such as lipoxins, resolvins, and protectins, play a significant role in the resolu-
tion of inflammation [22]. These mediators work by suppressing polymorphonuclear and
monocyte recruitment and protecting cells from damage, transforming the cytokine envi-
ronment from proinflammatory to proresolving (Figure 4). As a result, these proresolution
lipid mediators have significant therapeutic potential in diabetic renal and cardiovascular
disorders [21,80]. The inefficient metabolites of magnification lipid mediators in muscle
and adipose tissue contribute to the persistence of chronic inflammation in obesity [81].
This suggests that these lipids could be used to treat insulin resistance, diabetes, and the
problems that come with these conditions [82]. Table 1 represents various studies that link
DFI and CVD relations.
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Table 1. Relationship between the diabetic foot, diabetic syndrome, and cardiovascular disease.

SN Citations Relationship ME PS OUTCOME TRE

1 Feleke et al.
[28] (2007)

DFI and
CVD

LBBM,
OBBM 2818

DFI Infections led to morbidity, with the combined effect
of CVD leading to mortality. Following diabetic foot

ulcers came TB, skin and subcutaneous infections,
and pneumonia.

NR

2 Brownrigg et al.
[14] (2012)

DFI with
CVD risk of

mortality
LBBM 3619 DFI patients have a higher risk of all-cause mortality

than other diabetics. CVD contributes to this risk. NR

3 Matheus et al.
[83] (2013)

Diabetes
and CVD LBBM NR

Diabetes prevention is the most effective way to lower
CVD risk. Traditional, changeable heart disease risk

factors are still essential for diabetes people.
NR

4 Tuttolomondo
et al. [16] (2015)

DFS as a
Cardiovas-

cular
Marker

LBBM NR

In addition to peripheral sensory neuropathy, deformity,
and trauma, other risk factors, including calluses, edema,
and peripheral vascular disease, have been identified as

etiological contributors to the formation of diabetic
foot ulcers.

NR

5 Domingueti
et al. [13] (2015)

Diabetes
and CVD LBBM NR

Vascular problems in type 1 and type 2 diabetes are
closely linked to endothelial dysfunction,

hypercoagulability, inflammation, and the poor
resolution of inflammation.

NR

6 Al-Rubeaan
et al. [27] (2015)

DFI and
CVD LBBM NR

Neuropathy and PVD are major risk factors for diabetic
foot problems. Diabetic retinopathy is a major

independent risk factor for diabetic foot issues. CVD risk
factors are common among diabetics, and primary and
secondary prevention strategies are essential to reduce

morbidity and expense from this chronic condition.

NR

7 Bertoluci et al.
[11] (2017)

Diabetes
and CVD LBBM NR

CVD risk is increased 2- to 4-fold in people with type 2
diabetes, however, due to the disease’s extreme

variability, the two conditions cannot be regarded as risk
equivalents. To tailor care to each patient, risk

assessment is essential.

NR

8 Dietrich et al.
[15] (2017)

DFI as a
Predictor of

CVD and
Mortality

LBBM NR

DFS is linked to CVD and death. DFI’s connection with
renal failure and retinopathy indicates the evolution of

micro- and macrovasculopathy, neuropathy, chronic
inflammation, and lipotoxicity.

NR

9 Mishra et al.
[24] (2017)

DFI and
CVD LBBM NR

Patients diagnosed with DFI have an increased risk of
death from any cause compared to other diabetics. The

risk is increased by cardiovascular disease.
NR

SN Citations Relationship ME PS OUTCOME TRE

10 Petrie et al.
[84] (2018)

Diabetes
and

vascular
complica-

tion

LBBM NR

Diabetes and hypertension increase the possibility of
CVD. Oxidative stress, inflammation, and fibrosis, which

cause microvascular and macrovascular problems of
diabetes, also cause vascular modification.

NR

11 Serhiyenko et al.
[85] (2018)

Cardiac
autonomic
neuropathy
in diabetes

LBBM NR

CAN is a frequent, undiagnosed consequence of DM
that increases CV morbidity and mortality. As cardiac
denervation could be prevented and partially reversed
in early disease stages, DM patients should be screened

for it.

Yes

12 Shariful et al.
[12] (2020)

Diabetes
and CVD LBBM 1262

Diabetes increased CVD risk at an early age. To reduce
future CVD risks, diabetics must reduce cigarette usage

and improve BP control.
NR
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Table 1. Cont.

SN Citations Relationship ME PS OUTCOME TRE

13
Balasubramanian

et al. [20]
(2021)

DFI and
Microcircu-

lation
LBBM NR

Microcirculation plays a crucial function in tissue injury
and inflammation homeostasis and resistance.

Furthermore, the latest evidence supports the disruption
of microcirculation as the weak link in the sequence of

events that leads to DFI.

NR

14 Karhu et al.
[86] (2022)

Diabetes
and CVD LBBM 2535

Intermittent hypoxia is worse in people with preexisting
CVD, and diabetes and CVD accelerate IH deterioration.
Intermittent hypoxia is a pathophysiological hallmark of

sleep anemia that increases the risk for severe health
consequences. Patients with diabetes or CVD should

receive additional attention for sleep anemia screening
and follow-up monitoring.

NR

15 Schuett et al.
[87] (2022)

Diabetes
and CVD LBBM NR

Diabetes and hypertension trigger CVD. Oxidative
stress, inflammation, and fibrosis promote microvascular

and macrovascular diabetic complications.
NR

16 Qiu et al.
[57] (2022)

DFI and
CVD LBBM 423

The development of a diabetic foot ulcer was associated
with a considerably greater death risk from all causes as
well as from cardiovascular disease compared to that of
a control group of those who had diabetes mellitus but

did not have DFI.

NR

SN: serial number, RELATION Diabetic Foot and CVD, ME: method of evaluation, PS: patient size, OE: outcome,
TRE: Treatment, NR: not reported, CVD: Cardiovascular disease, DFI: Diabetic Foot Ulcer, DFS: Diabetic Foot
Syndrome, DM: Diabetic Mellitus, CAN: Cardio Autonomic Neuropathy, LB: Lab-base, OB-Office base, TB:
Tuberculosis, PAD: Peripheral Arterial Disease.

4. ML/DL-Based CVD/Stroke Risk Assessment in Diabetics Foot Ulcer Patients

There is evidence that ML/DL is being used in every industry, including medical
imaging [47,88,89]. Deep neural networks (DNNs), a subset of DL, are designed to function
like the human brain and have been shown to have several applications [36,90–92]. DL
makes automatic feature extraction, classification, and segmentation possible via the power
of convolution, max-pooling, and various channel maps such as spatial and temporal
attention [93–96]. Multiple publications have detailed the use of AI in the diagnosis
and prognosis of CVD [97–99] and the forecasting of lesions due to a DFI [51,100–104].
Furthermore, DL has played a crucial role in DFI identification during the presence of
comorbidities, including diabetes [105], Parkinson’s disease (PD) [106–110], rheumatoid
arthritis [111], and pneumonia [91,112]. In addition to CVD and diabetes„ the presence
of such comorbidities in patients profoundly impacts the nonlinear dynamics [113]. As a
result, the importance of DL is growing in identifying moderate and high-risk patients with
CVD/stroke risk [114–116]. Considering this, for superior CVD/stroke risk, an improved
set of biomarkers for DFI severity is needed.

Section 4.1 explains the ML/DL-based architecture for evaluating the risk of CVD/stroke
in DFI patients. CUSIP quantification using DL which includes the design of wall segmen-
tation using UNet, UNet+, UNet++, and UNet3P, one of the most advanced paradigms, will
be discussed in Section 4.2. Furthermore, DL for DFI lesion segmentation and quantifica-
tion is discussed in Section 4.3. Section 4.4 discussed the challenges in imaging modalities
models for CVD risk stratification in DFI patients.

4.1. ML/DL-Based Architecture for Evaluating the Risk of CVD/Stroke in DFI Patients

ML techniques were developed for superior segmentation and
classification [97,99,114,117,118]. Despite that, it lacked automated feature extraction. In
contrast, ML/DL is a powerful framework because it can create automated features by
utilizing the underlying knowledge base. It also provides an improved training paradigm in
which the nonlinearity between variables and the gold standard can be dynamically adjusted.
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These two aspects combine to make ML/DL a powerful framework [97,99,114,117,118]. Sep-
arating data into training and testing sets is a fundamental tenet of AI algorithms. Our team
has already experimented with several DL use cases [119–121]. As a result, we arrange our
data so that the classes are balanced or if augmentation is needed. Data preparation and
the selection of an appropriate cross-validation strategy are two of the most crucial factors
to think about before dividing a dataset.

The first step, “data preparation or preprocessing”, works in tandem with the second
step, “data partition”. Step three generates offline training using training data, and step
four estimates the risk of coronary artery disease or cardiovascular disease on the test
data (see Figure 5). Two basic procedures make up data preparation or preprocessing:
(i) normalizing the data using a typical scalar paradigm that translates the features (risk
factors) between 0 and 1, and (ii) augmenting the data using a SMOTE model [95,96]. It
has been seen that several algorithms use “PCA-based pooling” which is an established
unstructured statistical attribute selection technique as part of the data preparation in the
ML area and has been well adapted by our group [34,122].
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Figure 5. Hybrid model to predict the severity of CVD/Stroke in DFI framework (Courtesy of
AtheroPoint™, Roseville, CA, USA permission granted).

The second step of the system is responsible for data partitioning; here, the training
and testing sets are created with a K10 cross-validation methodology that uses 90% training
and 10% testing data. The third step of the architecture is a model generator, where
risk variables and the CAS serve as inputs to deep learning classifiers, such as recurrent
neural network (RNN) and long short-term memory (LSTM), which generate the offline
coefficients. Part four is a prediction paradigm, where the produced model is used to
change the test datasets to predict the CAD risk. Keep in mind that the CV is a multimodal
paradigm, thus, we will get the predicted CAD value for all the 10 combinations in a cyclic
sequence, making sure that no two combinations overlap and that no test data are included
in the training set [99,123,124].
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One important thing to remember is that the learning algorithm’s embedded feature
optimization is a prerequisite [99,125]. The online system is enhanced with a performance
component, which calculates accuracy considering the known reference values for the test
dataset. The right side below also shows the performance evaluation should the cohort be
used using cross-validation protocol, which consists of the computing accuracy, sensitivity,
specificity, precision, recall, and p-value as conducted in several of our applications [34,39,122].
Table 2 represents various studies used for DFI and CVD prediction. The predictive output
labels are either heart failure (cardiovascular events) or stroke (cerebrovascular events) and
can be categorized into four parts, such as low, mild, moderate, and high. [126].

Table 2. Studies show the role of AI in the diagnosis, and prediction of, DM, DFI, and CVD.

SN Citations IC DS REL PRE ClassTy TOC ML/DL ACC % AUC SEN SPE F1 MCC

1 Parthiban et al. [127] (2012) LBBM 341 DM, CVD, and AI CVD SVM NB ML 74.23 0.73 0.79 NR NR NR

2 Jelinek et al. [128] (2016) OBBM,
LBBM 88 DM, CVD, and AI CVD SVM RF ML 81.00 0.89 0.91 0.89 NR NR

3 Zarkogianni et al. [129] (2017) OBBM,
LBBM 560 DM, CVD, and AI CVD SVM NB ML 76.34 0.87 0.79 0.76 NR NR

4 Basu et al. [130] (2018) OBBM,
LBBM 2529 DM, CVD, and AI Death PCA KNN,

DT ML 84.34 0.843 0.87 NR 0.76 0.843

5 Dinh et al. [101]
(2019)

OBBM,
LBBM 131 DM, CVD, and AI DM, CVD XGBoost RF ML 84.10 0.81 0.78 0.73 NR NR

6 Segar et al. [131] (2019) OBBM,
LBBM 319 DM, CVD, and AI Heart Failure LDA RF ML 76.00 0.778 0.76 NR 0.79 0.778

7 Aggarwal et al. [116] (2020) OBBM,
LBBM 526 DM, CVD, and AI CVD SVM ANN ML 86.00 0.863 NR 0.81 0.71 NR

8 Derevitskii et al. [115] (2020) OBBM,
LBBM 8139 DM, CVD, and AI Stroke, DM XGBoost NB ML 84.53 0.87 0.91 0.86 NR NR

10 Hossain et al.
[132] (2021)

OBBM,
LBBM 4819 DM, CVD, and AI CVD SVM RF ML 88.16 0.80 NR NR 0.88 NR

11 Longato et al.
[103] (2021)

OBBM,
LBBM 24676 DM, CVD, and AI CVD SVM CNN DL 79.81 0.76 0.84 NR 0.79 NR

SN Citations IC DS REL PRE ClassTy TOC ML/DL ACC % AUC SEN SPE F1 MCC

13 Hyerim et al.
[102] (2022)

OBBM,
LBBM 10442 DM, CVD, and AI DM, CVD LR, DT CNN DL 80.88 0.86 0.81 NR NR NR

14 Goyal et al. [30] (2020) OBBM,
LBBM 7136 DFI and AI Diabetic foot

Infection NR CNN DL 91.21 0.93 0.84 0.89 NR NR

15 Alzubaidi et al. [51] (2020) OBBM,
LBBM 754 DFI and AI DFI KNN DNN DL 93.04 0.91 0.87 0.83 0.94 NR

16 Khandekar et al. [100] (2021) LBBM
(IR) 202 DFI and AI Diabetic foot 6

Models CNN DL 92.51 0.92 NR NR 0.81 NR

17 Isaza et al. [29] (2021) OBBM,
LBBM 146 DFI, CVD, and AI DFI PCA CNN DL 88.24 0.84 0.86 0.79 NR NR

SN: serial number, IC: input covariates, DS: data size, REL: Relation, PRE: Prediction, ClassTy: Classifier
type, OBBM: Office base biomarker, LBBM: Lab base biomarker, FE: feature extraction, TOC: Type of classifier,
ACC: Percentage accuracy, SEN: Sensitivity, SPE: Specificity, MCC: Mathew coefficient correlation, AUC: Area
under curve, DL: Deep learning, ML: Machine Learning, CNN: Convolution neural network, DFI: Diabetic Foot
Infection, DNN: Deep neural network, RF: Random forest, SVM: Support vector machine, DT: Decision tree,
LR: Logistic Regression, US: Ultrasound, NR: not reported.

4.1.1. CVD Risk Stratification Using ML-Based Classifiers

An ML-based classifier’s purpose is to sort the data it receives into one of several
predetermined categories or labels [133]. In the case of a task involving the prediction of
CVD or stroke events, for instance, applying the input features to the trained classifier
results in a prediction of either the “event” or “no-event” category. The ML-based classifier
in this work assigns each patient to either the low-risk or high-risk category, depending
on which risk profile they fit into. Meanwhile, we mentioned the fact that the purpose of
this study was to devise an ML system that was both effective and economical; therefore,
an RF classifier was included in the ML system to perform the risk stratification on the
patients [134]. Various studies effectively show the ML-based plaque risk stratification
using a Random Forest (RF) classifier. Jamithkar et al proposed (shown in Figure 6) an
RF-based ML algorithm that, compared to other ML-based algorithms, has been shown to
have a higher predictive capacity [135,136]. As a result, the RF classifier was chosen for the
risk stratification of the patients [137].
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Figure 6. CVD risk stratification is based on an automated AtheroRisk-ML Integrated system. Row 1
(A,B) is low risk, and Row 2 (C,D) is High Risk [137].

4.1.2. CVD Risk Stratification Using DL Classifiers

Recurrent Neural Network (RNN) Classifier: A study by Rumelhart et al. [138] explained
the concept of a subtype of neural network known as an RNN. Using RNNs to approximate
nonlinear unknown dynamical systems is a robust architecture [139,140]. Two of the
biggest difficulties in training an RNN are the vanishing gradients problem, which has a
direct influence on the stability of the model, and (ii) the difficult optimization target [141].
Figure 7 depicts the suggested hybrid design, which consists of a single RNN unit activated
with ReLU and four dense layers layered on top of it. There are 64, 32, and 8 nodes,
respectively, in the ReLU-activated intermediate dense layers. There are four softmax-
activated nodes in the output layer. A complete model is trained to determine a patient’s
atherosclerotic risk category based on their input characteristics. Training the model
occurred with the help of the loss function categorical cross-entropy loss (CEL) and the
optimizer Adaptive Moment Estimation (ADAM). Figure 7 provides a high-level view of
an RNN’s structure.
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LSTM classifier: Long-term short memory (LSTM) is one of the types of DL algorithms
that can be used to predict the likelihood of developing CVD or a stroke [96]. The issue
of long-term dependency is specifically designed to create an LSTM as shown in Figure 8.
They do not have to put in a lot of effort to learn how to remember things for extended
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periods because it is nearly part of their routine. The structure of an RNN always takes
the form of a series of modules of the neural network that are repeated. In basic RNNs,
this repeating module would frequently produce the same results as a single tanh layer.
One of the most important characteristics of an LSTM is its capacity to perform analysis
on multiple varieties of data points, such as a single observation. This design incorporates
four primary elements, namely, cells, update gates, output gates, and null gates. The design
is based on a single component called a cell. The values are stored in the cell at random
intervals, and the flow of information or features into and out of the cell is controlled
by three gates [142–144]. The LSTM consists of four fully connected layers that are fully
coupled to one another and stacked on top of one another. When it comes to creating
long-term linkages in data, an LSTM performs better than other methods [145].
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The dropout strategy is difficult to implement, which makes it difficult to prevent
overfitting in LSTMs, which is a common problem with these models. Dropout is a
regularization method that works by leaving out the input and recurrent links to LSTM
units during the activation and weight-updating steps of training a network. The behavior
of an LSTM after being subjected to a variety of random weight initializations is, as a
result, quite comparable to that of a feed-forward neural network. Instead, they chose
initialization with a small amount of weight [96].

4.2. CUSIP Quantification Using UNet Architectures: UNet, UNet+, UNet++, UNet3P

Since the morphology of the plaque has variability, one needs out-of-the-box tech-
niques which use knowledge-based systems for CUSIP measurements [31]. Such knowledge-
based systems evolve a training program that can undergo nonlinear adjustment, as was
previously demonstrated in the context of CVD risk stratification [97,98,137,146,147]. The
image-based phenotypes that are generated from carotid ultrasound scans are regarded
to be CUSIP [67,148]. These phenotypes include total plaque area, average and maximum
carotid intima-media thickness (cIMT), intima-media thickness variability (IMTV), geomet-
ric total plaque area (gTPA), morphological total plaque area (mTPA), and lumen diameter
(LD) [149–151] (AtheroEdge™ 3.0, AtheroPoint™, Roseville, CA, USA). This CUSIP is then
used to improve the ML algorithm results shown in Figure 9. The segmentation of the
carotid wall is helpful in the process of identifying the presence of plaque buildup [152–154].
The GT is an important component in the design of ML-based CVD risk stratification. This
GT can be a CAD indicator, such as a CT score derived from the CT imaging. CT scoring
can also be estimated using a DL framework or one can use plaque tissue characterization
using optical coherence tomography (OCT) [155]. The paper by Suri et al. [156] discusses
the CT-based scoring system. One can also use an IVUS-based solution for detecting CAD
lesions [33,157,158].
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Jain et al. [121] have proposed the UNet model for the segmentation of atherosclerotic
plaque as shown in Figure 10. The model represents a four-layer DL-based UNet design
consisting of four encoders and four decoders on each side of the U-shaped network. The
encoder takes down samples while the decoder takes up samples. Each UNet encoder
stage has a 2D-convolution, ReLU, and MaxPooling layer. Each decoder stage includes a
stack of up-convolution-2D, depth-concatenation, 2D-convolution, ReLU, and MaxPooling
layers. Encoder stage one receives a 224 × 224 grayscale US carotid scan. Stage one had
64 convolution filters, and each subsequent stage doubled that number. Each stage has
128, 256, and 512 filters. Each decoder stage halves the number of filters, such as 512,
256, 128, and 64, which are the bottom numerals in the illustration. The bridge network
connects the encoder and decoder units. The bridge network has 3 × 1024 filters. Bridge
network features can be concatenated to the last encoder stage after downsampling from
the first upsampling level. Each encoder stage’s spatial features are sent to the decoder
through a skip connection. These functionalities are added to the decoder or bridge network
layers. After the final decoder step, the plaque region and backdrop are identified using
the softmax classifier layer (pink). An ADAM optimizer reduced plaque segmentation
cross-entropy loss.

Deep learning has been improved by the addition of two models that operate inde-
pendently of each other, a technique known as hybrid deep learning (HDL) [32,160–162].
As a result, an SDL-based UNet architecture can be used to create an HDL-based UNet,
which may result in improved performance. In addition, given the arrangement of the
convolution layer configuration, one can leverage the parallelization notion to increase the
HDL designs’ overall performance. The UNet advanced algorithms, such as UNet++ and
UNet3P, are shown in Appendix A.

Jain et al. [121] show the role of UNet on two sets of carotid artery scans taken from
Japanese and Hong Kong databases and in an unseen AI framework, which allows training
on dataset A and testing on dataset B. The UNet model was trained on 330 Japanese DB
photos and then evaluated on 300 Hong Kong DB images in the first experiment, referred
to as “Unseen AI-1 (Tr: JAP, Te: HK)” [96]. Figure 11 shows the visualization of the carotid
data. The UNet training model’s nine classification parameters considered were as follows:
(i) the reliability coefficient (CC); (ii) the area under the curve (AUC); (iii) the accuracy;
(iv) the sensitivity; (v) the specificity; (vi) the precision; (vii) Mathew’s correlation coefficient;
(viii) the dice similarity coefficient (DSC); and (ix) the Jaccard index (JI). The mean values
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of the nine classification parameters for the 300 images in the HK DB are 0.8, 0.87, 98.55,
95.41, 98.64, 67.82, 79.29, 78.38, and 65.42 [121].
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4.3. Deep Learning for Diabetic Foot Ulcer Lesion Segmentation and Its Quantification

Multiple investigations utilizing a variety of imaging techniques have demonstrated DL’s
effectiveness in detecting DFI lesions [163–165]. In reality, DL has been tried out for lesion
detection in several different settings, including (i) the common carotid artery [111,119,166],
(ii) the coronary artery [33,167,168], (iii) the brain tumor [169–171], (iv) skin cancer [43,122],
and (v) CT-based pulmonary imaging [172,173]. The DFI typically has amorphous shapes
and permeable boundaries. The skin around a DFI might seem different at different phases,
such as redness to callus formation, blistering, granulation, sloughing, bleeding, and scaly
skin [174]. The skin around a DFI is crucial because it reveals whether or not the DFI
is healing, and it is also a potential extension area [175,176]. Ischemia, inflammation,
aberrant pressure, maceration from exudates, and other conditions all raise the likelihood
of fragile skin. Similarly, if the skin around the DFI looks healthy, the wound is healing
well. The medical imaging of diabetes-related foot ulcers remains complicated [164]. For
the representation, we use a smartphone-captured foot image for the modality. However,
CT/MRI/Xray images can be used for the imaging modality of foot ulcers [100].

To improve the process of extracting significant features that are connected to the
classification of a DFI, a novel model of a deep CNN-based architecture has been pro-
posed by Alzubaidi et al. [51]. The Directed Acyclic Graph (DAG) principle served as the
inspiration for its structure during the design process. When employing these kinds of
networks, two major concerns must be addressed. For certain uses, a network that consists
of a limited number of different layers and has a straightforward structure is adequate.
Furthermore, DFI categorization requires a network that has a more intricate structure to
retrieve more information to differentiate between typical and abnormal classes. This not
only contributes to an increase in the number of details that can be learned but also to an
improvement in the correctness of that learning. Figure 12 illustrates the overall process
that our classification follows.
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The color, consistency, and discharge of the surrounding skin are all analyzed, and
the area is palpated for signs of warmth, swelling, and soreness. Inflammation, usually
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caused by a wound infection, is indicated by the presence of redness. Black discoloration
may indicate ischemia. If something is white and wet, it is because of maceration, but if it
is white and dry, it is usually because of increased pressure. Understanding that skin tones
affect how things look is crucial. Sometimes, skin lesions that show up red or brown on
white appear black or purple. Darker skin colors may hide even mild cases of redness. The
process of segmentation is designed by first extracting texture features and color variables
from small patches of wound images, and then using ML algorithms to identify the patches
of skin as either normal or aberrant [177–180].

Here, we focus on an image-based DFI lesion segmentation and its quantification
that extracts features (covariates) during the DL paradigm. In DL, manual delineations
of DFI lesions are challenging and are also vital for the design of offline DL training
models. Figure 13 shows a few instances in which FCN-AlexNet and FCN-32s models
can detect the small DFI and distinct surrounding skin or detect a very small part of
them. Hyperparameter adjustment during training is a crucial part of DL for achieving
optimal system performance. To avoid overfitting and ensure generalization, it is necessary
to optimize (i) the learning rate, (ii) the number of epochs, (iii) the batch size, (iv) the
normalization of batches, and (v) the addition of dropout layers. As a corollary, the ideal
DL architecture necessitates the use of many biomarker sets, each with its unique collection
of data, on a big data platform that guarantees a multiresolution platform for speedy
implementation [94]. To guarantee faster performance, such pretrained models can benefit
from transfer learning when used for DFI lesion segmentation [120,180–183].
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Figure 13. Four different FCN models (columns 3–6) and the gold standard (column 2) demonstrate
the segmentation of the DFI area (green) from the skin (red) around it [51].

4.4. Challenges in CVD Risk Stratification on DFI Patients

Despite the availability of a wide range of diagnostic imaging techniques for the
examination of diabetes-related foot problems, it is still difficult to differentiate between
neuroarthropathy and osteomyelitis. The early and precise diagnosis of diabetic foot
problems can assist in lowering the prevalence of infection-related comorbidities, the
requirement for hospitalization, the length of hospitalization, and the prevalence of major
limb amputations.
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The main procedures that are used at this time for the examination of diabetes-
related foot problems include traditional radiography, computerized tomography, nuclear
medicine scintigraphy, magnetic resonance imaging, ultrasound, and positron emission
tomography [184,185]. On the other hand, each one of these modalities cannot provide
enough information by itself; therefore, a multimodal approach is required to arrive at an
accurate diagnosis [186].

Therefore, we hypothesize that DL models can execute specific tasks, such as auto-
mated disease diagnosis, with more precision and efficiency than ML models, and that
they serve as a second level of validation on the diagnosis. Models that have been trained
using DL can be used for a broad variety of challenges, such as differential diagnosis,
enhancements to image acquisition, and picture-based quantification.

The AI models have some challenges: (i) The data size must be large. If the data size is
not big enough, SMOTE should be used during training to make it bigger. (ii) GT should
be evaluated correctly for CVD risk, such as CAD in the training model. (iii) Optimization
must be performed during the training of the CVD design. (iv) The correct CUSIP should
be found by using UNET with attention channel maps. (v) All biomarkers, such as OBBM,
LBBM, CUSIP, MedUSE, and DFI Severity, must be collected in the right way. (vi) DFI
Severity DL system should give the risk appropriate and be validated by the Diabetologist
or even surgeons dealing with foot amputations. (vii) Strong ML or DL models, such as
XGBOOST, RNN, and LSTM, must be taken into account. (viii) If the ML models are not
strong, one can switch to ML or DL ensemble models.

5. Discussion
5.1. Principal Findings

This is the first study to investigate the risk factors and gold standards for CVD and
stroke in DFI patients based on their symptoms. The findings highlight the importance of
selecting CVD and stroke risk-assessment approaches for DFI patients, especially those
at high risk for CVD and stroke. Diagnosing a heart issue in a patient with a DFI is
aided by surrogate carotid artery imaging. It has become clear from our research that
ultrasound-based imaging techniques are the most practical for carotid atherosclerotic
imaging. Furthermore, under the DFI framework, AI-based algorithms are the best option
for the risk stratification of CVD/stroke.

A DFI is widely considered harmful to the brain and the heart. The review shows how
a DFI worsens CVD and stroke in a progressive chain of events. We propose an approach to
employing AI to aid in the diagnosis of CVD/stroke risk stratification in the DFI framework.
Therefore, we can employ gold standards, such as coronary artery CT scores or coronary
IVUS plaque burden, for superior AI training-based design for offline model generation,
which can then be used for transforming the test patient features for CVD/stroke risk
prediction. Using an AI-based model, we can effectively monitor these patients and prevent
any CVD-related adverse long-term effects. Thus, for the DFI framework, ML and DL
models can help provide a more precise assessment of the risk of CVD and stroke. The
model could be taught so that it operates automatically and quickly. This is a game-changer
for modern healthcare systems, particularly in identifying CVD and stroke risks in DFI
patients. Clinicians can use the AI models’ vascular and cerebrovascular data-based results
to better counsel DFI patients and advise them on their CVD/stroke risk stratification.

5.2. Benchmarking

An analysis of the available data reveals that a DFI and CVD have been connected
in a few studies using OBBM, LBBM, and MedUSE. In the study, AI’s role in identifying
combined CVD/stroke and a DFI has only been briefly mentioned. The AI model is only
utilized by selecting a few articles within the DFI framework to describe the severity of CVD.

Parthiban et al. [127] explained the role of classifiers that can be helpful in the early
diagnosis of the diabetic patient’s susceptibility to developing heart disease. The patients
can then be warned to adjust the way they live as a result. Diabetic individuals will be less



J. Clin. Med. 2022, 11, 6844 19 of 33

likely to develop heart disease, leading to lower mortality rates and, therefore, less overall
healthcare costs. An SVMs classifier was explored that used a cross-validation protocol and
showed an accuracy of 83.32%. Therefore, the use of this SVM model for the categorization
of the diabetic dataset is something that may be advocated.

Jelinek et al. [128] focused on automatically identifying severe diabetic neuropathy us-
ing a brand-novel algorithm called Glioblastoma Multiforme (GBML). The study evaluated
the specificity and sensitivity of the findings using GBML and compared the results against
other ML methods. The patient size was 242. The uses K5 CV protocol. The GBML test for
identifying acute diabetic neuropathy reached the highest degree of performance, with a
sensitivity of 0.98 and a specificity of 0.89.

Zarkogianni et al. [129] carried out a study into the application of cutting-edge ML
methods, the bilinear model, and ensemble learning to produce CVD risk scores for a
population with type 2 diabetes. The utilization of a subsampling learning strategy resulted
in the production of several primary models based on Hybrid Wavelet Neural Networks
(HWNN) and self-organizing maps (SOM). The independently trained primary models’
results were combined using DL and the results were then compared with one another. The
models were evaluated using information taken from the medical records of 560 T2DM
patients. The best discrimination performance achieved an area under the curve (AUC) of
up to 71.48%.

Segar et al. [131] proposed an innovative risk prediction tool, WATCH-DM, which was
tested on a well-phenotyped clinical study of patients with type 2 diabetes and cardiovascular
disease or risk factors, but no history of heart failure at baseline. It identified patients who
face a heart failure risk of up to 20% in the next five years. Since the data needed to calculate
the WATCH-DM risk score are collected during the routine clinical care of patients with type
2 diabetes, therefore, integrating the WATCH-DM risk score into electronic health record
systems or mobile health applications will provide a powerful tool for clinical practice. The
advantage of WATCH-DM is that it does not require a particular cardiovascular biomarker or
supplementary imaging examination. More research needs to be done to determine whether
or not the WATCH-DM can be effective compared to other therapeutic options that are now
accessible, such as sodium-glucose transport proteins (SGLT2i).

Aggarwal et al. [116] demonstrated diabetes mellitus (DM) causes hyperglycemia.
Type 1 and type 2 diabetes are insulin-deficiency and insulin-resistance conditions. It can
induce atherosclerosis, stroke, and MI. Neurodegeneration and autonomic dysfunction are
also present. Autonomic balance regulates nonlinear physiological factors. The data size
of 526 was produced from ECG data to evaluate 13 regressive HRV parameters and test
ANN. With these inputs, an ANN design (13:7:1), at a 0.01 learning rate, achieved 86.3%
classification accuracy. SVM differentiated diabetic and controlled individuals with an
accuracy of 90.5%. Nonlinear HRV parameters reveal different changes owing to diabetes,
so they can be combined with ML algorithms to construct a noninvasive, low-cost real-time
diabetes prognosis system.

Derevitskii et al. [115] proposed that DM is among the most frequent forms of diabetes,
also known as chronic diabetes. This particular form of diabetes is among the healthcare
industry’s most pressing concerns today. This disease is linked to several other conditions
that simultaneously raise the risk of CVD and premature impairment. Patients diagnosed
with type 2 diabetes have an elevated risk of various problems. In the case of patients
such as these, medical doctors required methods that were more realistic for estimating the
potential for future difficulties.

Karhu et al. [86] explained that the role of diabetes is extremely common in individuals
who have already been diagnosed with CVD or chronic heart failure, and it is associated
with a large increase in the likelihood of unfavorable outcomes. However, the persistently
poor outcomes of people with diabetes mellitus highlight the importance of diabetes-
specific systematic reviews and novel therapeutics aimed at specific pathophysiological
requirements such as diabetic vascular and heart disease.
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Schuett et al. [87] proposed that diabetes is prevalent in individuals who have already
been diagnosed with CVD or chronic heart failure. It is essential to provide holistic care that
focuses on lowering overall cardiovascular risk by employing various prevention methods
to significantly cut the risk of cardiovascular events, progress to CHF, and mortality. How-
ever, the continually poor results of individuals with DM emphasize the importance of a
diabetes-specific systematic review. Innovative therapeutics for particular pathophysiolog-
ical conditions require an assessment of diabetic vascular and heart disease. To the best
of our knowledge, no AI study has ever been able to provide us with information that is
both clear and helpful regarding the CVD and stroke risk classification of DFI patients. The
benchmarking analysis for the studies listed in Table 3 is presented below.

Table 3. Comparing the proposed review against previous reviews on joint DFI and CVD.

SN Citations Year DFIa DMb CVDc DId WIe AIf RSg ClassTyh ML/DLj ACC
%k AUCl SENm SPEn F1o

1 Parthiban et al. [127] 2012 × X X × × X × X X X X × × ×

2 Jelinek et al. [128] 2016 X X X × × × × × × × × × × ×

3 Zarkogianni et al. [129] 2017 × × X X × X × X X X × × × ×

4 Segar et al. [131] 2019 X X X × × × × × × × × × × ×

5 Dinh et al. [101] 2019 X X X X X X X X X X × × × ×

6 Aggarwal et al. [116] 2020 X × × X × X × X X X X × × ×

7 Derevitskii et al. [115] 2020 X X X × × × × × × × × × × ×

8 Karhu et al. [86] 2022 X X X × × × × × × × × × × ×

9 Schuett et al. [87] 2022 X X X × × × × × × × × × × ×

10 Hossain et al. [132] 2021 X X X × X X × X X X X × × ×

11 Longato et al. [103] 2021 X X X × × X × X X X X × × ×

12 Hyerim et al. [102] 2021 X X X × × X × X X X X × × ×

13 Maindarkar et al.
(proposed) 2022 X X X X X X X X X X X X X X

DFIa: Diabetic foot Infection, DMb: Diabetic Melliuties, CVDc: Cardiovascular diseases, WId: Wound Imaging,
CIe: Carotid Imaging AIf: Artificial Intelligence, RSg: Risk Stratification, ClassTYh: Type of Classifier, ACCk:
Accuracy, AUCl: Area under curve, SENm: Sensitivity, SPEn: Specificity.

5.3. Special Note on Casual Relationship between DFI and CVD

DFIs are vascular complications of diabetes mellitus associated with high mortality
and morbidity. A few authors discovered a higher prevalence of major, previous, and
new-onset cardiovascular and cerebrovascular events in diabetic patients with foot ulcers
than in those without these complications [23,52,187,188]. This is consistent with diabetes’
complicated interplay of factors with inflammatory metabolic diseases and their effects
on the cardiovascular system, which could explain the increased morbidity and mortality
levels in diabetic patients with amputations [189]. Inflammatory markers, such as IL-6
plasma levels and resisting, in diabetic participants validated the pathogenic issue of the
“adipovascular” axis, which may add to the cardiovascular risk in type 2 diabetics. This
“adipovascular axis” could be linked to the cause of foot ulcers in people with diabetes
through microvascular and inflammatory mechanisms [2].

5.4. A Short Note on the Effect of COVID-19 on DFI Patients

COVID-19 has been shown to have affected several organs of the human body, such as
the brain and heart [190]. A DFI causes more disability and death than any other diabetes
condition. DFIs that do not heal despite treatment are the primary cause of hospitalization,
amputation, disability, and mortality among people with diabetes [191]. People with
diabetes, especially those with extensive foot ulcers, present significant issues in the face of
a global pandemic such as COVID-19 [192]. To face the COVID-19 outbreak, the traditional
diabetic foot treatment routine is no longer appropriate. Various studies have commented
on a novel procedure for treating a patient with a DFI in the setting of the worldwide
COVID-19 pandemic [188,193,194]. DFIs were classified as (i) mild (having no wound
or tiny wound, no infection, and stable condition), (ii) moderate (having complex and
refractory infection wound), or (iii) severe (having dry gangrene, sore in the injury, body
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temperature, and sepsis symptoms) [195]. Patients with generalized diabetic foot issues can
receive treatment at home with the help of telemedicine. This allows clinicians to instruct
patients and encourage them to do a selfexamination of the foot, how to change wound
dressings, and administer medications [192]. Patients with severe problems are referred
to the hospital’s outpatient clinic for treatment following a positive COVID-19 screening.
Patients with a severe DFI who have been diagnosed or suspect that they have a COVID-19
infection require immediate isolation and ongoing quarantine. Patients with a low or mild
DFI will be discharged to continue their care at home under telemedicine monitoring and
physician supervision, while patients with a critical DFI will be admitted to the hospital
following a COVID-19 screening [196]. During their hospital stay, patients with a DFI in a
serious condition will receive a variety of treatments, ranging from rest and medication to
debridement and local dilatation, and even amputation [197].

5.5. A Short Note on Bias in Deep Learning Systems for CVD/Stroke Risk, DFI, CUSIP
Measurements

Bias was unnoticed in early computer-aided diagnosis systems [198]. Recently, the role
of bias estimation in AI models has quickly emerged. Several factors are important, such as
the sample size used in the training model design step of the DL algorithms, which is very
important to consider. Furthermore, there is bias in AI due to several factors, including (i) a
lack of clinical testing of AI techniques, (ii) scientific validation, (iii) failing to meet the gold
standard, (iv) comorbidities, (v) a lack of big data configuration, (vi) failing to perceive
the proper disease severity ratio, and (vii) variabilities in CVD [199]. As a consequence
of this, when DFI-associated CVD symptoms (or risk variables) are investigated as inputs
to an AI model, it is essential that the AI model be stable, accurate, and have a small
amount of AI bias [152,156,173,200,201]. It is possible to observe that the database contains
patient characteristics that are particular to a given region. Because of this, the model can
produce false positive or negative results for other places, which would make the algorithm
biased [185,202].

5.6. Work Flow for CVD Risk Stratification for DFI Patients

The workflow of the CVD/stroke risk stratification of DFI/DM patients can be seen
in Figure 14. The pipeline consists of three major systems, labeled A, B, and C. System A
consists of a DFI severity estimation given the patient’s condition if the patient has a DFI.
This DFI is an online system called A-on. System B consists of the CUSIP measurements
which is also an online AI-based system, called B-on. The final system C is also an online
system, such as a machine or deep learning system, for CVD/stroke risk stratification
labeled as C-on. Note that all three online AI-based systems are supervised and, hence,
must be executed by the trained offline systems called A-off, B-off, and C-off. Note that
the A-on system accepts real camera phone images of the DFI whose DFI severity needs
to be estimated using the A-off system. The output of the A-on system is the DFI severity.
The B-on system accepts the surrogate imaging of CAD, so-called carotid imaging, along
with the B-off trained system leading to the CUSIP measurements. Finally, the C-on system
is triggered by taking the inputs of online laboratory-based biomarkers, such as LBBM,
OBBM, CUSIP, MedUSE, and DFI-severity, and the C-off trained system to estimate the
CVD/stroke risk stratified system.

The main feature of the model is cost-effectiveness. The imaging device used for
diabetic foot infection image capturing is a smartphone. CUSIP is used for the carotid
artery scan. There is no necessity for extra devices.
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Figure 14. The overall architecture of CVD screening on DM and DFI patients. A-on: Online DL-based
FDI severity system, A-off: Offline DL-based FDI severity system, B-on: Online DL-based Carotid
wall quantification system, B-off: Offline DL-based Carotid wall quantification system, C-on: Online
ML-based CVD Risk Assessment system, C-off: Offline ML-based CVD risk assessment system, DM:
Diabetes Mellitus, DFI: Diabetic foot infection, CUISP: Carotid ultrasound image phenotype.

The main feature of the model is cost-effectiveness. The imaging device used for
diabetic foot infection image capturing is a smartphone. CUSIP is used for the carotid
artery scan. There is no necessity for extra devices.

5.7. Strengths, Weakness, and Extensions

The presented research article explains the various essential aspects of risk stratifica-
tion for CVD and stroke patients with a DFI disease. Because of its improved nonlinear
adjustment between the variables and the gold standard, DL provides better training and
more accurate risk prediction. Additionally, the system gives it thorough predictors, such
as OBBM, LBBM, CUSIP, MedUSE, and DFI as covariates, in addition to providing an
estimation of the lesion size based on the wound scans of the diabetic foot. The role of an
LSTM or RNN, an extremely effective strategy for creating the DL system for predicting
the risk of CVD and stroke, was given. In conclusion, the DL system is generalized, and
this generalization can be changed by including additional covariates and comorbidities,
such as diabetes, rheumatoid arthritis, renal disease, coronary artery disease, etc.

While DL brings some benefits to the system, one must always ensure that the system
is optimized to take advantage of these benefits. In addition, the DL system needs a solid
gold standard for (a) lesion annotations and (b) CVD/stroke gold standard collection in
cohorts. Both of these steps take a significant amount of time, and they also have associated
costs. Last, but not least, as was said before, deep learning systems are vulnerable to
artificial intelligence bias because of their overperformance in terms of accuracy and lack
of interpretability.

When it comes to the design of extensions, ensemble-based methodologies allow for
the creation of superior DL systems. Big data are an option that could be considered to
strengthen the DL system by using a larger sample size and more data sources. If only
a few participants are in the cohort, the DL system can be improved by incorporating
augmentation designs. One can also integrate the conventional image-processing models
with advanced DL models for superior feature extraction [5]. Furthermore, as part of
the extension, one can learn about ulcers using multimodality imaging [203]. Another
important component is to monitor the CVD/stroke risk with the changing DFI lesions.
This can incorporate tools for image registration [204]. Last, but not least, the DL system
needs to be updated with the latest round of pruning so that smaller training storage
models [205] and evolutionary approaches [206] can be used.

6. Conclusions

This in-depth study brought to light the significance of CVD and stroke risk predictions
for people with a DFI living in a diabetic environment. Additionally, we demonstrated how
a DFI combined with hypertension can lead to strokes in both the vascular and cerebral
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systems. This review focused on how a DFI may contribute to the already complex nature
of CVD and stroke. Therefore, it is essential to classify DFI patients’ risk of CVD and
stroke. Carotid screening is a noninvasive, reduced alternative to traditional imaging that
can be used to monitor people with a DFI for CVD and stroke. The low-cost B-mode
ultrasonography will also help to describe the plaque tissue in patients with a DFI, which
can improve the estimation of the risk of CVD and stroke. The severity of the DFI can be
diagnosed and quantified using wound scan pictures of foot lesions. This information can
then be used as a covariate in the DL design process.

An artificial intelligence-based model for predicting the risk of CVD and stroke in DFI
patients was described using the AI framework. Because of this, we have discussed the function
of an AI-based model that, based on the DFI risk profile of the patient, can reliably categorize
patients diagnosed into risk groups for CVD and stroke. Finally, we explore the function that
AI plays in this setting as well as the engagement of a DFI in the CVD/stroke paradigm.
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Appendix A UNet+ and UNet++, and UNet3P Architecture

The UNet+ and UNet++ designs are depicted below in Figures 10 and A1, respec-
tively [207]. Both of these networks are enhanced variations of the UNet’s architecture. In
each of these architectural designs, the links between the encoder and decoder stages are
handled by something called a “dense skip network (DSN)”. The UpConv layer is the first
in the DSN, which is then proceeded by concatenation and two levels of convolution. The
output of the subsequent encoder stage is passed through the UpConv layer and into the
concatenation layer, where it is merged with the output of the same encoder level. Both
UNet+ and UNet++ have the same quantity of DSNs at every stage of the encoding and
decoding process. It is important to note that, in the case of the UNet+ architecture, each
DSN is only connected to its previous skip network output, as shown in Figure 10, whereas
in the case of the UNet++ architecture, every DSN is linked to all prior DSNs in the same
phase via avoiding network outputs, as shown in Figure A1. Figure 10 shows the UNet+
architecture, and Figure A1 shows the UNet++ architecture.

The UNet3P network is yet another iteration of the original UNet protocol. This model
presents a novel approach to full-scale skip connection that improves upon the utility
of multiscale features. High-level definition of feature maps generated from multiscale
features is combined with lower-level specifics of the region of interest to use these full-scale
skip connections. A lack of interconnectivity between features on
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Figure A1. UNet++ Architecture.

Different scales are a weakness shared by UNet, UNet+, and UNet++. Therefore,
UNet3P takes advantage of the multiscale features by incorporating lower-scale character-
istics from the transmitter side with high-scale characteristics from the decoder side. In
the UNet3P architecture, Decoder Stage 1 combines the characteristics map from Encoder
Phase 1 (same scale), Decoder Phases 2, 3, and 4, and the bridge connection (large-scale).
The characteristics map from Encoder Step 1, Encoder Stage 2, Decoder Stages 3, 4, and
the bridge are combined in Decoder Stage 2 (large scale). The information from the first
two stages of the encoder (at a lower scale), the third stage of the encoder (at the same
scale), the fourth stage of the decoder, and the bridge are combined in the third stage of the
decoder (large scale). Stage 4 of the decoder combines the information from stages 1–3 of
the encoder (smaller scale), stage 4 of the encoder (same scale), and the bridge. The UNet3P
architecture is depicted as a block diagram in Figure A2.
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