50 research outputs found

    Numerical convergence of pre-initial conditions on dark matter halo properties

    Get PDF
    Generating pre-initial conditions (or particle loads) is the very first step to set up a cosmological N-body simulation. In this work, we revisit the numerical convergence of pre-initial conditions on dark matter halo properties using a set of simulations which only differs in initial particle loads, i.e. grid, glass, and the newly introduced capacity constrained Voronoi tessellation (CCVT). We find that the median halo properties agree fairly well (i.e. within a convergence level of a few per cent) among simulations running from different initial loads. We also notice that for some individual haloes cross-matched among different simulations, the relative difference of their properties sometimes can be several tens of per cent. By looking at the evolution history of these poorly converged haloes, we find that they are usually merging haloes or haloes have experienced recent merger events, and their merging processes in different simulations are out-of-sync, making the convergence of halo properties become poor temporarily. We show that, comparing to the simulation starting with an anisotropic grid load, the simulation with an isotropic CCVT load converges slightly better to the simulation with a glass load, which is also isotropic. Among simulations with different pre-initial conditions, haloes in higher density environments tend to have their properties converged slightly better. Our results confirm that CCVT loads behave as well as the widely used grid and glass loads at small scales, and for the first time we quantify the convergence of two independent isotropic particle loads (i.e. glass and CCVT) on halo properties.Peer reviewe

    Spin mode reconstruction in Lagrangian space

    Get PDF
    Galaxy angular momentum directions (spins) are observable, well described by the Lagrangian tidal torque theory, and proposed to probe the primordial universe. They trace the spins of dark matter halos, and are indicators of protohalos properties in Lagrangian space. We define a Lagrangian spin parameter and tidal twist parameters and quantify their influence on the spin conservation and predictability in the spin mode reconstruction in N-body simulations. We conclude that protohalos in more tidal twisting environments are preferentially more rotation-supported, and more likely to conserve their spin direction through the cosmic evolution. These tidal environments and spin magnitudes arc predictable by a density reconstruction in Lagrangian space, and such predictions can improve the correlation between galaxy spins and the initial conditions in the study of constraining the primordial universe by spin mode reconstruction.Peer reviewe

    The Timeless Timing Argument and the Mass of the Local Group

    Full text link
    The Timing Argument connects the motion of a two-body system to its mass in an expanding Universe with a finite age, under the assumption that it has evolved on a self-gravitating orbit. It is commonly applied to the present-day Milky Way-M31 system in order to infer its unknown mass from the measured kinematics. We use a set of Local Group analogues from the Uchuu simulation to investigate the Timing Argument over cosmic time. We find that the median inferred mass remains almost constant over the past 12 Gyr, even while the haloes themselves grew in mass by more than an order of magnitude. By contrast, we find a closer, and nearly time-invariant agreement between the Timing Argument value and the mass within a sphere of radius equal to the MW-M31 separation, and we identify this as the total mass of the system. We conclude that the comparatively close present-day agreement between the Timing Argument and the sum of the halo masses reflects no underlying relation, but merely echoes the fact that the MW and M31 now contain most (but not all) of the mass of the Local Group system.Comment: 6 pages, 4 figures, this version accepted to MNRAS Letter

    The timeless timing argument and the total mass of the Local Group

    Get PDF
    The timing argument connects the motion of a two-body system to its mass in an expanding Universe with a finite age, under the assumption that it has evolved on a self-gravitating orbit. It is commonly applied to the present-day Milky Way (MW)–M31 system in order to infer its unknown mass from the measured kinematics. We use a set of Local Group analogues from the UCHUU simulation to investigate the timing argument over cosmic time. We find that the median inferred mass remains almost constant over the past 12 Gyr, even while the haloes themselves grew in mass by more than an order of magnitude. By contrast, we find a closer, and nearly time-invariant agreement between the timing argument value and the mass within a sphere of radius equal to the MW–M31 separation, and we identify this as the total mass of the system. We conclude that the comparatively close present-day agreement between the timing argument and the sum of the halo masses reflects no underlying relation, but merely echoes the fact that the MW and M31 now contain most (but not all) of the mass of the Local Group system

    The segregation of baryons and dark matter during halo assembly

    Get PDF
    The standard galaxy formation theory assumes that baryons and dark matter are initially well mixed before becoming segregated due to radiative cooling. We use non-radiative hydrodynamical simulations to explicitly examine this assumption and find that baryons and dark matter can also be segregated due to different characteristics of gas and dark matter during the buildup of the halo. As a result, baryons in many haloes do not originate from the same Lagrangian region as the dark matter. When using the fraction of corresponding dark matter and gas particles in the initial conditions (the ‘paired fraction’) as a proxy of the dark matter and gas segregation strength of a halo, on average about 25 per cent of the baryonic and dark matter of the final halo are segregated in the initial conditions. This is at odds with the assumption of the standard galaxy formation model. A consequence of this effect is that the baryons and dark matter of the same halo initially experience different tidal torques and thus their angular momentum vectors are often misaligned. The degree of the misalignment is largely preserved during later halo assembly and can be understood with the tidal torque theory. The result challenges the precision of some semi-analytical approaches that utilize dark matter halo merger trees to infer properties of gas associated with dark matter haloes

    Resolving the Complex Evolution of a Supermassive Black Hole Triplet in a Cosmological Simulation

    Get PDF
    We present here a self-consistent cosmological zoom-in simulation of a triple supermassive black hole (SMBH) system forming in a complex multiple galaxy merger. The simulation is run with an updated version of our code KETJU, which is able to follow the motion of SMBHs down to separations of tens of Schwarzschild radii while simultaneously modeling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation, and stellar and AGN feedback. Our simulation produces initially an SMBH binary system for which the hardening process is interrupted by the late arrival of a third SMBH. The KETJU code is able to accurately model the complex behavior occurring in such a triple SMBH system, including the ejection of one SMBH to a kiloparsec-scale orbit in the galaxy due to strong three-body interactions as well as Lidov-Kozai oscillations suppressed by relativistic precession when the SMBHs are in a hierarchical configuration. One pair of SMBHs merges similar to 3 Gyr after the initial galaxy merger, while the remaining binary is at a parsec-scale separation when the simulation ends at redshift z = 0. We also show that KETJU can capture the effects of the SMBH binaries and triplets on the surrounding stellar population, which can affect the binary merger timescales as the stellar density in the system evolves. Our results demonstrate the importance of dynamically resolving the complex behavior of multiple SMBHs in galactic mergers, as such systems cannot be readily modeled using simple orbit-averaged semianalytic models.Peer reviewe

    Constraining interacting dark energy models with the halo concentration - mass relation

    Full text link
    The interacting dark energy (IDE) model is a promising alternative cosmological model which has the potential to solve the fine-tuning and coincidence problems by considering the interaction between dark matter and dark energy. Previous studies have shown that the energy exchange between the dark sectors in this model can significantly affect the dark matter halo properties. In this study, utilising a large set of cosmological NN-body simulations, we analyse the redshift evolution of the halo concentration - mass (cc - MM) relation in the IDE model, and show that the cc - MM relation is a sensitive proxy of the interaction strength parameter ξ2\xi_2, especially at lower redshifts. Furthermore, we construct parametrized formulae to quantify the dependence of the cc - MM relation on ξ2\xi_2 at redshifts ranging from z=0z=0 to 0.60.6. Our parametrized formulae provide a useful tool in constraining ξ2\xi_2 with the observational cc - MM relation. As a first attempt, we use the data from X-ray, gravitational lensing, and galaxy rotational curve observations and obtain a tight constraint on ξ2\xi_2, i.e. ξ2=0.071±0.034\xi_2 = 0.071 \pm 0.034. Our work demonstrates that the halo cc - MM relation, which reflects the halo assembly history, is a powerful probe to constrain the IDE model.Comment: 9 pages, 5 figures, 5 table

    Dark matter haloes in interacting dark energy models : formation history, density profile, spin, and shape

    Get PDF
    The interacting dark energy (IDE) model, which considers the interaction between dark energy and dark matter, provides a natural mechanism to alleviate the coincidence problem and can also relieve the observational tensions under the ?CDM model. Previous studies have put constraints on IDE models by observations of cosmic expansion history, cosmic microwave background, and large-scale structures. However, these data are not yet enough to distinguish IDE models from ?CDM effectively. Because the non-linear structure formation contains rich cosmological information, it can provide additional means to differentiate alternative models. In this paper, based on a set of N-body simulations for IDE models, we investigate the formation histories and properties of dark matter haloes and compare with their ?CDM counterparts. For the model with dark matter decaying into dark energy and the parameters being the best-fitting values from previous constraints, the structure formation is markedly slowed down, and the haloes have systematically lower mass, looser internal structure, higher spin, and anisotropy. This is inconsistent with the observed structure formation, and thus this model can be safely ruled out from the perspective of non-linear structure formation. Moreover, we find that the ratio of halo concentrations between IDE and ?CDM counterparts depends sensitively on the interaction parameter and is independent of halo mass. This can act as a powerful probe to constrain IDE models. Our results concretely demonstrate that the interaction of the two dark components can affect the halo formation considerably, and therefore the constraints from non-linear structures are indispensable.Peer reviewe
    corecore