2,890 research outputs found
Discontinuities in the Electromagnetic Fields of Vortex Beams in the Complex Source/Sink Model
An analytical discontinuity is reported in what was thought to be the
discontinuity-free exact nonparaxial vortex beam phasor obtained within the
complex source/sink model. This discontinuity appears for all odd values of the
orbital angular momentum mode. Such discontinuities in the phasor lead to
nonphysical discontinuities in the real electromagnetic field components. We
identify the source of the discontinuities, and provide graphical evidence of
the discontinuous real electric fields for the first and third orbital angular
momentum modes. A simple means of avoiding these discontinuities is presented.Comment: 10 pages, 4 figure
PACIAE 2.0: An updated parton and hadron cascade model (program) for the relativistic nuclear collisions
We have updated the parton and hadron cascade model PACIAE for the
relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7 to
based on PYTHIA 6.4, and renamed as PACIAE 2.0. The main physics concerning the
stages of the parton initiation, parton rescattering, hadronization, and hadron
rescattering were discussed. The structures of the programs were briefly
explained. In addition, some calculated examples were compared with the
experimental data. It turns out that this model (program) works well.Comment: 23 pages, 7 figure
The termination shock of a magnetar wind: a possible origin of gamma-ray burst X-ray afterglow emission
Context: Swift observations suggest that the X-ray afterglow emission of some
gamma-ray bursts (GRB) may have internal origins, and the conventional external
shock (ES) cannot be the exclusive source of the afterglow emission. Aims: If
the central compact objects of some GRBs are millisecond magentars, the
magnetar winds could play an important role in the (internal) X-ray afterglow
emission, which is our focus here. Methods: The dynamics and the synchrotron
radiation of the termination shock (TS) of the magmnetar winds, as well as the
simultaneous GRB ES, are investigated by considering the magnetization of the
winds. Results: As a result of the competition between the emission of the wind
TS and the GRB ES, two basic types of X-ray afterglows are predicted, i.e., the
TS-dominated and the ES-dominated types. Moreover, our results also show that
both of the two types of afterglows have a shallow-decay phase and a
normal-decay one, as observed by the \textit{Swift} satellite. This indicates
that some observed X-ray afterglows could be (internally) produced by the
magnetar winds, but not necessarily GRB ESs.Comment: 5 pages, 3 figure
Evaluation of Long-Chain Fatty Acid Respiration in Neonatal Mouse Cardiomyocytes Using SeaHorse Instrument
Metabolic switches play a critical role in the pathophysiology of cardiac diseases, including heart failure. Here, we describe an assay for long-chain fatty acid oxidation in neonatal mouse cardiomyocytes by using a SeaHorse Flux Analyzer (Agilent). This protocol is a simplified but robust adaptation of the standard protocol that enables metabolic measurements in cells isolated from transgenic mouse models, which can be timesaving and informative. Cell isolation and culture represent a critical point that may require bench optimization.
For complete details on the use and execution of this protocol, please refer to Angelini et al. (2021)
The impact of positive and negative psychological affect and overconfidence from major family events on new venture survival
This paper investigates how family events interacting with entrepreneurs’ psychological affect and overconfidence impact new venture viability. We use panel data from the Australian Household, Income and Labor Dynamics survey, focusing on family event-induced psychological affect entrepreneurs experience as a predictor of new venture survival. Our accelerated failure time model shows that although negative family events interact with entrepreneur overconfidence to spur cautious behaviour, positive events interacting with overconfidence have the biggest impact (negative) on new ventures. The study enhances our understanding of the embeddedness of family in the entrepreneurial process and challenges past research by revealing how positive family events can have a greater negative impact on new venture survival than negative ones
The Synergistic Effect of SAHA and Parthenolide in MDA-MB231 Breast Cancer Cells
The sesquiterpene lactone Parthenolide (PN) exerted a cytotoxic effect on MDA-MB231 cells, a triple-negative breast cancer (TNBC) cell line, but its effectiveness was scarce when employed at low doses. This represents an obstacle for a therapeutic utilization of PN. In order to overcome this difficulty we associated to PN the suberoylanilide hydroxamic acid (SAHA), an histone deacetylase inhibitor. Our results show that SAHA synergistically sensitized MDA-MB231 cells to the cytotoxic effect of PN. It is noteworthy that treatment with PN alone stimulated the survival pathway Akt/mTOR and the consequent nuclear translocation of Nrf2, while treatment with SAHA alone induced autophagic activity. However, when the cells were treated with SAHA/PN combination, SAHA suppressed PN effect on Akt/mTOR/Nrf2 pathway, while PN reduced the prosurvival autophagic activity of SAHA. In addition SAHA/PN combination induced GSH depletion, fall in Δψm, release of cytochrome c, activation of caspase 3 and apoptosis. Finally we demonstrated that combined treatment maintained both hyperacetylation of histones H3 and H4 induced by SAHA and down-regulation of DNMT1 expression induced by PN. Inhibition of the DNA-binding activity of NF-kB, which is determined by PN, was also observed after combined treatment. In conclusion, combination of PN to SAHA inhibits the cytoprotective responses induced by the single compounds, but does not alter the mechanisms leading to the cytotoxic effects. Taken together our results suggest that this combination could be a candidate for TNBC therapy. J. Cell. Physiol. 230: 1276-1289, 2015
- …
