1,659 research outputs found

    Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement

    Get PDF
    Compartmentalization is an important process, since it allows the segregation of metabolic activities and, in the era of synthetic biology, represents an important tool by which defined microenvironments can be created for specific metabolic functions. Indeed, some bacteria make specialized proteinaceous metabolic compartments called bacterial microcompartments (BMCs) or metabolosomes. Here we demonstrate that the shell of the metabolosome (representing an empty BMC) can be produced within E. coil cells by the coordinated expression of genes encoding structural proteins. A plethora of diverse structures can be generated by changing the expression profile of these genes, including the formation of large axial filaments that interfere with septation. Fusing GFP to PduC, PduD, or PduV, none of which are shell proteins, allows regiospecific targeting of the reporter group to the empty BMC. Live cell imaging provides unexpected evidence of filament-associated BMC movement within the cell in the presence of Pdu

    Dynamics and Berry phase of two-species Bose-Einstein condensates

    Get PDF
    In terms of exact solutions of the time-dependent Schrodinger equation for an effective giant spin modeled from a coupled two-mode Bose-Einstein condensate (BEC) with adiabatic and cyclic time-varying Raman coupling between two hyperfine states of the BEC, we obtain analytic time-evolution formulas of the population imbalance and relative phase between two components with various initial states, especially the SU(2)coherent state. We find the Berry phase depending on the number parity of atoms, and particle number dependence of the collapse revival of population-imbalance oscillation. It is shown that self-trapping and phase locking can be achieved from initial SU(2) coherent states with proper parameters.Comment: 18 pages,5 figure

    Optimization of Sample Preparation and Phloroglucinol Analysis of Marselan Grape Skin Proanthocyanidins using HPLC-DADESI- MS/MS

    Get PDF
    Proanthocyanidins are a group of oligomeric or polymeric flavan-3-ols that are highly significantcontributors to astringency in grapes and wines. An orthogonal L9(3)4 test was adopted to determine theoptimal extraction conditions and acid-catalysis cleavage of proanthocyanidins in the presence of excessphloroglucinol. The qualitative and quantitative analyses were done using HPLC-DAD-ESI-MS/MS. Theresults showed that the maximum extraction was obtained using 0.3 mol/L of HCl and 0.005 g of ascorbicacid with incubation at 70°C for 20 min. The precision and accuracy of this method were acceptable. Thecomposition of free flavan-3-ols and proanthocyanidins in the skins of ‘Marselan’ grapes (Vitis vinifera L.cv.) was investigated. (-)-Epigallocatechin was found to be the most abundant free flavan-3-ol monomerand terminal subunits, whereas the extension subunits were mainly (-)-epicatechin-3-O-gallate in the earlydevelopmental stages, and primarily (-)-epigallocatechin and (-)-epicatechin in the middle and late stages

    Spline-based geometry for printed monopole antennas

    Full text link

    Constitutive behavior of as-cast A356

    Full text link
    The constitutive behavior of aluminum alloy A356 in the as-cast condition has been characterized using compression tests performed over a wide range of deformation temperatures (30-500{\deg}C) and strain rates (\approx0.1-10 /s). This work is intended to support the development of process models for a wide range of conditions including those relevant to casting, forging and machining. The flow stress behavior as a function of temperature and strain rate has been fit to a modified Johnson-Cook and extended Ludwik-Hollomon expression. The data has also been assessed with both the strain-independent Kocks-Mecking and Zener-Hollomon frameworks. The predicted plastic flow stress for each expression are compared. The results indicate that the extended Ludwik-Hollomon is best suited to describe small strain conditions (stage III hardening), while the Kocks-Mecking is best employed for large strain (stage IV). At elevated temperatures, it was found that the Zener-Hollomon model provides the best prediction of flow stress.Comment: 34 pages, 12 figure

    Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip

    Get PDF
    Using the recursive Green's function technique, we study the coherent electron conductance of a quantum point contact in the presence of a scanning probe microscope tip. Images of the coherent fringe inside a quantum point contact for different widths are obtained. It is found that the conductance of a specific channel is reduced while other channels are not affected as long as the tip is located at the positions correspending to that channel. Moreover, the coherent fringe is smoothed out by increasing the temperature or the voltage across the device. Our results are consistent with the experiments reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page

    Turbulence induced additional deceleration in relativistic shock wave propagation: implications for gamma-ray burst

    Full text link
    The late afterglow of gamma-ray burst is believed to be due to progressive deceleration of the forward shock wave driven by the gamma-ray burst ejecta propagating in the interstellar medium. We study the dynamic effect of interstellar turbulence on shock wave propagation. It is shown that the shock wave decelerates more quickly than previously assumed without the turbulence. As an observational consequence, an earlier jet break will appear in the light curve of the forward shock wave. The scatter of the jet-corrected energy release for gamma-ray burst, inferred from the jet-break, may be partly due to the physical uncertainties in the turbulence/shock wave interaction. This uncertainties also exist in two shell collisions in the well-known internal shock model proposed for gamma-ray burst prompt emission. The large scatters of known luminosity relations of gamma-ray burst may be intrinsic and thus gamma-ray burst is not a good standard candle. We also discuss the other implications.Comment: accepted for publication in Astrophysics and Space Scienc

    Neutron scattering search for static magnetism in oxygen ordered YBa2Cu3O6.5

    Full text link
    We present elastic and inelastic neutron scattering results on highly oxygen ordered YBa2Cu3O6.5 ortho-II. We find no evidence for the presence of ordered magnetic moments to a sensitivity of 0.003 Bohr magnetons, an order of magnitude smaller than has been suggested in theories of orbital or d-density-wave (DDW) currents. The absence of sharp elastic peaks, shows that the d-density-wave phase is not present, at least for the superconductor with the doping of 6.5 and the ordered ortho-II structure. We cannot exclude the possibility that a broad peak may exist with extremely short-range DDW correlations. For less ordered or more doped crystals it is possible that disorder may lead to static magnetism. We have also searched for the large normal state spin gap that is predicted to exist in an ordered DDW phase. Instead of a gap we find that the Q-correlated spin susceptibility persists to the lowest energies studied, 6 meV. Our results are compatible with the coexistence of superconductivity with orbital currents, but only if they are dynamic, and exclude a sharp phase transition to an ordered d-density-wave phase.Comment: 6 pages 4 figures RevTex Submitted to Phys Rev B January 23, 200

    First Principles NMR Study of Fluorapatite under Pressure

    Full text link
    NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) \textit{ab initio} calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method [Pickard and Mauri, 2001]. Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from --5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as 43^{43}Ca and 17^{17}O.Comment: 8 pages, 2 figures, 3 table

    Superconducting zero temperature phase transition in two dimensions and in the magnetic field

    Full text link
    We derive the Ginzburg-Landau-Wilson theory for the superconducting phase transition in two dimensions and in the magnetic field. Without disorder the theory describes a fluctuation induced first-order quantum phase transition into the Abrikosov lattice. We propose a phenomenological criterion for determining the transition field and discuss the qualitative effects of disorder. Comparison with recent experiments on MoGe films is discussed.Comment: 7 pages, 2 figure
    corecore