6,690 research outputs found
Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination
We computationally demonstrate that two-dimensional covalent triazine frameworks (CTFs) provide opportunities in water desalination. By varying the chemical building blocks, the pore structure, chemistry, and membrane performance can be designed, leading to two orders of magnitude higher water permeability than polyamide membranes while maintaining excellent ability to reject salts.Netherlands Organization for Scientific ResearchUnited States. Dept. of Energy (Contract No. DE-AC02-05CH11231)Deshpande Center for Technological Innovatio
Multilayer Nanoporous Graphene Membranes for Water Desalination
While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.National Science Foundation (U.S.) (grant number ACI-1053575)Netherlands Organization for Scientific Research (NWO
Understanding brønsted-acid catalyzed monomolecular reactions of Alkanes in Zeolite Pores by combining insights from experiment and theory
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at BrOnsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (k(app)), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+) and the intrinsic rate coefficient of the reaction (k(int)) at reaction temperatures, since k(app) is proportional to the product of Kads-H+ and k(int). We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C-3-C-6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of k(app) and its components, Kads-H+ and k(int)
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
Graph convolutional network (GCN) has been successfully applied to many
graph-based applications; however, training a large-scale GCN remains
challenging. Current SGD-based algorithms suffer from either a high
computational cost that exponentially grows with number of GCN layers, or a
large space requirement for keeping the entire graph and the embedding of each
node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm
that is suitable for SGD-based training by exploiting the graph clustering
structure. Cluster-GCN works as the following: at each step, it samples a block
of nodes that associate with a dense subgraph identified by a graph clustering
algorithm, and restricts the neighborhood search within this subgraph. This
simple but effective strategy leads to significantly improved memory and
computational efficiency while being able to achieve comparable test accuracy
with previous algorithms. To test the scalability of our algorithm, we create a
new Amazon2M data with 2 million nodes and 61 million edges which is more than
5 times larger than the previous largest publicly available dataset (Reddit).
For training a 3-layer GCN on this data, Cluster-GCN is faster than the
previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much
less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this
data, our algorithm can finish in around 36 minutes while all the existing GCN
training algorithms fail to train due to the out-of-memory issue. Furthermore,
Cluster-GCN allows us to train much deeper GCN without much time and memory
overhead, which leads to improved prediction accuracy---using a 5-layer
Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI
dataset, while the previous best result was 98.71 by [16]. Our codes are
publicly available at
https://github.com/google-research/google-research/tree/master/cluster_gcn.Comment: In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD'19
Recommended from our members
Aluminum with dispersed nanoparticles by laser additive manufacturing.
While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. However, this remains difficult to do during laser additive manufacturing. Here, we show that aluminum reinforced by nanoparticles can be deposited layer-by-layer via laser melting of nanocomposite powders, which enhance the laser absorption by almost one order of magnitude compared to pure aluminum powders. The laser printed nanocomposite delivers a yield strength of up to 1000 MPa, plasticity over 10%, and Young's modulus of approximately 200 GPa, offering one of the highest specific Young's modulus and specific yield strengths among structural metals, as well as an improved specific strength and thermal stability up to 400 °C compared to other aluminum-based materials. The improved performance is attributed to a high density of well-dispersed nanoparticles, strong interfacial bonding between nanoparticles and Al matrix, and ultrafine grain sizes
Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No Pure-Pixel Case
In blind hyperspectral unmixing (HU), the pure-pixel assumption is well-known
to be powerful in enabling simple and effective blind HU solutions. However,
the pure-pixel assumption is not always satisfied in an exact sense, especially
for scenarios where pixels are heavily mixed. In the no pure-pixel case, a good
blind HU approach to consider is the minimum volume enclosing simplex (MVES).
Empirical experience has suggested that MVES algorithms can perform well
without pure pixels, although it was not totally clear why this is true from a
theoretical viewpoint. This paper aims to address the latter issue. We develop
an analysis framework wherein the perfect endmember identifiability of MVES is
studied under the noiseless case. We prove that MVES is indeed robust against
lack of pure pixels, as long as the pixels do not get too heavily mixed and too
asymmetrically spread. The theoretical results are verified by numerical
simulations
Response to "Impact of Zeolite Structure on Entropic-Enthalpic Contributions to Alkane Monomolecular Cracking: An IR Operando Study".
This is a response to the paper published by S. A. Kadam, H. Li, R. F. Wormsbacher, A. Travert, Chem. Eur. J. 2018, 24, 5489. Key consistencies between our reported results and those reported in this work are also highlighted
Diagnostic for new physics in decays
A recent analysis of decays concludes that present data do not
clearly indicate whether (i) the standard model (or new physics)
is sufficient, or (ii) new physics is needed. We show that these
two possibilities can be distinguished by whether a sum rule relating the CP
asymmetries of the four decays is valid. If case (i) is favored,
the sum rule holds, and one predicts , while in case
(ii) fits to new physics involving large values of a color-suppressed tree
amplitude entail . The current experimental average
must be measured a factor of at least
three times more precisely in order to distinguish between the two cases.Comment: 10 pages, no figures. Submitted to Physics Letters B. Slight
clarification adde
- …
