198 research outputs found

    Cephalosporin-induced Hemolytic Anemia in a Sicilian Child.

    Get PDF
    A 27-month-old child developed acute hemolysis on two occasions after the administration of cephalosporin. On the first occasion, hemolysis was intravascular and was due to the formation of complexes between antibodies and the drug, which bound to red blood cells and caused severe hemolysis. On the second occasion, hemolysis was extravascular and was probably due to antibody-dependent cell mediated cytotoxicity. Marked increases in levels of CD19(+), and CD57(+) CD8(+) cells were detected among the subpopulations of the patient's lymphocytes but only in the level of CD19(+) cells from the patient's father, after incubation of a sample of whole blood with a solution of cephalosporins. These results might explain the differences between the immune response of the patient and those of other members of his family and of an unrelated control

    Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis.

    Get PDF
    Nonalcoholic steatohepatitis (NASH) is associated with increased liver-related mortality. Disturbances in hepatic lipid homeostasis trigger oxidative stress and inflammation (ie, lipotoxicity), leading to the progression of NASH. This study aimed at identifying whether silibinin may influence the molecular events of lipotoxicity in a mouse model of NASH. Eight-week-old db/db mice were fed a methionine-choline deficient (MCD) diet for 4 weeks and treated daily with silibinin (20 mg/kg intraperitoneally) or vehicle. Liver expression and enzyme activity of stearoyl-CoA desaturase-1 and acyl-CoA oxidase, and expression of liver fatty acid-binding protein were assessed. Hepatic levels of reactive oxygen species, thiobarbituric acid-reactive substances (TBARS), 3-nitrotyrosine (3-NT), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NFkB) activities were also determined. Silibinin administration decreased serum alanine aminotransferase and improved liver steatosis, hepatocyte ballooning, and lobular inflammation in db/db mice fed an MCD diet. Gene expression and activity of stearoyl-CoA desaturase-1 were reduced in db/db mice fed an MCD diet compared with lean controls and were increased by silibinin; moreover, silibinin treatment induced the expression and activity of acyl-CoA oxidase and the expression of liver fatty acid-binding protein. Vehicle-treated animals displayed increased hepatic levels of reactive oxygen species and TBARS, 3-NT staining, and iNOS expression; silibinin treatment markedly decreased reactive oxygen species and TBARS and restored 3-NT and iNOS to the levels of control mice. db/db mice fed an MCD diet consistently had increased NFkB p65 and p50 binding activity; silibinin administration significantly decreased the activity of both subunits. Silibinin treatment counteracts the progression of liver injury by modulating lipid homeostasis and suppressing oxidative stress-mediated lipotoxicity and NFkB activation in experimental NASH

    Glutamate-evoked redox state alterations are involved in tissue transglutaminase upregulation in primary astrocyte cultures

    Get PDF
    AbstractThe aim of this study was to evaluate the involvement of oxidative stress in glutamate-evoked transglutaminase (TGase) upregulation in astrocyte cultures (14 DIV). A 24 h exposure to glutamate caused a dose-dependent depletion of glutathione intracellular content and increased the ROS production in cell cultures. These effects were receptor-mediated, as demonstrated by inhibition with GYKI 52466. The pre-incubation with glutathione ethyl ester or cysteamine recovered oxidative status and was effective in significantly reducing glutamate-increased tissue TGase. These data suggest that tissue TGase upregulation may be part of a biochemical response to oxidative stress induced by a prolonged exposure of astrocyte cultures to glutamate

    Proteasome inhibitors as a possible therapy for SARS-CoV-2

    Get PDF
    The COVID-19 global pandemic is caused by SARS-CoV-2, and represents an urgent medical and social issue. Unfortunately, there is still not a single proven effective drug available, and therefore, current therapeutic guidelines recommend supportive care including oxygen administration and treatment with antibiotics. Recently, patients have been also treated with off-label therapies which comprise antiretrovirals, anti-inflammatory compounds, antiparasitic agents and plasma from convalescent patients, all with controversial results. The ubiquitin–proteasome system (UPS) is important for the maintenance of cellular homeostasis, and plays a pivotal role in viral replication processes. In this review, we discuss several aspects of the UPS and the effects of its inhibition with particular regard to the life cycle of the coronaviruses (CoVs). In fact, proteasome inhibition by various chemical compounds, such as MG132, epoxomycin and bortezomib, may reduce the virus entry into the eucariotic cell, the synthesis of RNA, and the subsequent protein expression necessary for CoVs. Importantly, since UPS inhibitors reduce the cytokine storm associated with various inflammatory conditions, it is reasonable to assume that they might be repurposed for SARS-CoV-2, thus providing an additional tool to counteract both virus replication as well as its most deleterious consequences triggered by abnormal immunological response

    Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation

    Get PDF
    Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance

    Potential therapeutic effects of natural heme oxygenase-1 inducers in cardiovascular diseases.

    Get PDF
    Significance: Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of α-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenols may increase the capacity of endogenous antioxidant defenses and modulate the cellular redox state. Such effects may have wide-ranging consequences for cellular growth and differentiation. Critical Issues: The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. One possible protective molecular mechanism of polyphenols is nuclear factor erythroid 2-related factor (Nrf2) activation, which in turn regulates a number of detoxification enzymes. Recent Advances: Among the latter, the heme oxygenase-1 (HO-1) pathway is likely to contribute to the established and powerful antioxidant/anti-inflammatory properties of polyphenols. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to prevention of cardiovascular diseases in various experimental models. Future Directions: The focus of this review is on the role of natural HO-1 inducers as a potential therapeutic strategy to protect the cardiovascular system against various stressors in several pathological conditions

    Role of heme oxygenase-1 (HSP32) and HSP90 in glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The current treatment regimes for glioblastoma demonstrated a low efficiency and offer a poor prognosis. Advancements in conventional treatment strategies have only yielded modest improvements in overall survival. The heat shockproteins, heme oxygenase-1 (HO-1) and Hsp90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. This topic review summarizes the current preclinical and clinical evidences and rationale to define the potential of HO-1 and Hsp90 in GBM progression and chemoresistance

    Antiblastic Treatment, for Solid Tumors, during Pregnancy: A Crucial Decision:

    Get PDF
    Cancer is the second leading cause of death during the reproductive years complicating between 0.02% and 0.1% of pregnancies. The incidence is expected to rise with the increase in age of childbearing. The most common types of pregnancy-associated cancers are: cervical cancer, breast cancer, malignant melanoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma and ovarian cancer. The relatively rare occurrence of pregnancy-associated cancer precludes conducting large, prospective studies to examine diagnostic, management and outcome issues. The treatment of pregnancy-associated cancer is complex since it may be associated with adverse fatal effects. In pregnant patients diagnosed with cancer during the first trimester, treatment with multidrug anti-cancer chemotherapy is associated with an increased risk of congenital malformations, spontaneous abortions or fetal death, and therefore, should follow a strong recommendation for pregnancy termination. Second and third trimester exposure is not associated with teratogenic effect but increases the risk of intrauterine growth retardation and low birth weight. There are no sufficient data regarding the teratogenicity of most cytotoxic drugs. Almost all chemotherapeutic agents were found to be teratogenic in animals and for some drugs only experimental data exist. Moreover, no pharmacokinetic studies have been conducted in pregnant women receiving chemotherapy in order to understand whether pregnant women should be treated with different doses of chemotherapy. This article reviews the available data regarding the different aspects of the treatment of cancer during pregnancy

    Circulating S100B and Adiponectin in Children Who Underwent Open Heart Surgery and Cardiopulmonary Bypass

    Get PDF
    Background. S100B protein, previously proposed as a consolidated marker of brain damage in congenital heart disease (CHD) newborns who underwent cardiac surgery and cardiopulmonary bypass (CPB), has been progressively abandoned due to S100B CNS extra-source such as adipose tissue. The present study investigated CHD newborns, if adipose tissue contributes significantly to S100B serum levels. Methods. We conducted a prospective study in 26 CHD infants, without preexisting neurological disorders, who underwent cardiac surgery and CPB in whom blood samples for S100B and adiponectin (ADN) measurement were drawn at five perioperative time-points. Results. S100B showed a significant increase from hospital admission up to 24 h after procedure reaching its maximum peak (P0.05) have been found all along perioperative monitoring. ADN/S100B ratio pattern was identical to S100B alone with the higher peak at the end of CPB and remained higher up to 24 h from surgery. Conclusions. The present study provides evidence that, in CHD infants, S100B protein is not affected by an extra-source adipose tissue release as suggested by no changes in circulating ADN concentrations
    • …
    corecore