2,228 research outputs found

    Effect of an External Field on Decoherence

    Get PDF
    "Decoherence of quantum superpositions through coupling to engineered reservoirs" is the topic of a recent article by Myatt et al. [Nature {\underline{403}}, 269 (2000)] which has attracted much interest because of its relevance to current research in fundamental quantum theory, quantum computation, teleportation, entanglement and the quantum-classical interface. However, the preponderance of theoretical work on decoherence does not consider the effect of an {\underline{external field}}. Here, we present an analysis of such an effect in the case of the random delta-correlated force discussed by Myatt et al

    Optimization of commercial net spacers in spiral wound membrane modules

    Get PDF
    CFD simulations have been used to determine mass transfer coefficients and power consumption of commercial net spacers. The simulations show transversal and longitudinal vortices, vortex shedding and instationary flow behavior leading to the enhanced mass transfer in spacer filled-channels compared to empty channels. The results of the simulations were validated with experiments and compared with data reported in literature, showing satisfactory agreement. Furthermore, CFD simulations were used to optimize the geometry of commercial net spacers in terms of mass transfer and power consumption. The performance of these optimized spacer geometries will be used as reference for future work on the development of new high-performance spacer shapes

    Novel modular switched reluctance machines for performance improvement

    Get PDF
    Compared to non-modular machines, modular topologies become increasingly attractive due to their simplified manufacture process, better fault tolerant capability and potentially reduced material consumption. In order to maintain or even enhance the machine performance while achieving high fault tolerant capability, novel modular, single layer winding switched reluctance machines (SRMs) with different pole numbers are proposed, which are supplied by rectangular wave current with different conduction angles. The influences of the pole number and flux gap width between E-core segmented stators on the electromagnetic performance have been investigated in terms of self- and mutual inductances, electromagnetic torque, copper loss, iron loss, and radial force. It has been found that the modular structures with higher rotor pole numbers than stator slot numbers (12-slot/14-pole and 12-slot/16-pole SRMs) can maintain and even improve the average torque due to the nature of self- and mutual inductances. In addition, the torque ripple for modular machines are significantly reduced (below 50%), so do the iron loss and radial force, leading to higher efficiency albeit with potentially lower vibration and acoustic noise. Two prototypes with 12-slot/8-pole and 12-slot/14-pole combinations have been built with both non-modular and modular structures to validate the predictions in terms of inductances and static torques

    Investigation on contribution of inductance harmonics to torque production in multiphase doubly salient synchronous reluctance machines

    Get PDF
    This paper investigates the contribution of each order inductance harmonic to the torque (both average torque and torque ripple) of multiphase doubly salient synchronous reluctance machines (DS-SRMs). Such machines are similar to switched reluctance machines but supplied with sinewave currents. The investigations in this paper are as follows: first, a general analytical torque model based on Fourier Series analysis of inductances has been built for machines with different phase numbers, slot/pole number combinations and also winding configurations. The instantaneous torque for DS-SRMs with any given phase number can then be accurately predicted. Using such model, contribution of each order inductance harmonic to torque can be investigated separately. It is found that the torque ripple frequency of the DS-SRM only depends on phase number. For example, for a m-phase machine, there will be m×kth order torque ripple if mod(mk,2)=0, where m is phase number and k is a natural number. This study also explains why certain phase numbers inherently produce lower torque ripple than others. The findings in this paper provide a future direction for potential torque ripple reduction methods either from machine design or advanced control. The simulations have been validated by experiments using a 6-phase DS-SRMs

    Influence of Conduction Angles on Single Layer Switched Reluctance Machines

    Get PDF
    This paper investigates the influence of conduction angles on the performances of two 3-phase 12-slot/8-pole short pitched switched reluctance machines (SRMs): single layer SRM with conventional winding (SL-CSRM), and single layer SRM with mutually coupled winding (SL-MCSRM). Both unipolar and bipolar excitations are employed for the SRMs with different conduction angles such as unipolar 120° elec., unipolar 180° elec., bipolar 180° elec., bipolar 240° elec., and bipolar 360° elec. Their flux distributions, self- and mutual-flux linkages and inductances are analyzed, and followed by a performance comparison in terms of on-load torque, average torque, torque ripple, using two-dimensional finite element method (2D FEM). Copper loss, iron loss and machine efficiency have also been investigated with different phase currents and rotor speeds. The predicted results show that the conduction angle of unipolar 120° elec. is the best excitation approach for SL-CSRM at low current and also modest speed, as its double layer counterpart. However, at high current, the higher average torque is achieved by a conduction angle of unipolar 180° elec. For SL-MCSRM, bipolar 180° elec. conduction is the most appropriate excitation method to generate a higher average torque but lower torque ripple than others. The lower iron loss is achieved by unipolar excitation, and the SLCSRM with unipolar 120° elec. conduction produces the highest efficiency than others at 〖10A〗_rms. In addition, the performances of single layer machines have been compared with the established double layer SRMs with conventional and mutually-coupled windings. The prototype SRMs, for both SL-CSRM and SL-MCSRM, have been built and tested to validate the predictions

    Performance comparison of doubly salient reluctance machine topologies supplied by sinewave currents

    Get PDF
    This paper comprehensively investigates the electromagnetic performance of 3-phase, 12-slot, and 8-pole switched reluctance machines (SRMs) with different winding configurations, i.e. double/single layer, short pitched (concentrated) and fully pitched (distributed). These SRMs are supplied by sinewave currents so that a conventional 3-phase converter can be employed, leading to behavior which is akin to that of synchronous reluctance type machines. Comparisons in terms of static and dynamic performances such as d- and q-axis inductances, on-load torque, torque-speed curve, efficiency map, etc. have been carried out using two-dimensional finite element method (2-D FEM). It is demonstrated for the given size of machine considered, that for same copper loss and without heavy magnetic saturation, both single and double layer mutually coupled SRMs can produce higher on-load torque compared to conventional SRMs. Additionally, double layer mutually coupled SRM achieved the highest efficiency compared to other counterparts. When it comes to single layer SRMs, they are more suitable for middle speed applications and capable of producing higher average torque while lower torque ripple than their double layer counterparts at low phase current. Two prototype SRMs, both single layer and double layer, are built to validate the predictions

    Investigation on synchronous reluctance machines with different rotor topologies and winding configurations

    Get PDF
    This paper investigates the influence of rotor topologies and winding configurations on the electromagnetic performance of 3-phase synchronous reluctance machines with different slot/pole number combinations, e.g. 12-slot/4-pole and 12-slot/8-pole. Transversally laminated synchronous reluctance rotors with both round flux barrier and angled flux barrier have been considered, as well as the doubly-salient rotor as that used in switched reluctance machines. Both concentrated and distributed winding configurations are accounted for, i.e., single layer and double layer conventional and mutually coupled windings, as well as fully-pitched winding. The machine performance in terms of d- and q-axis inductances, on-load torque, copper loss, and iron loss have been investigated using 2-D finite-element analysis. With appropriate rotor topology, 12-slot/4-pole and 12-slot/8-pole machines with fully-pitched and double layer mutually coupled windings can achieve similar torque capacity, which are higher than the machines with other winding configurations. In addition, the synchronous reluctance machine with round flux barrier can have lower iron loss than doubly salient reluctance machine under different working conditions. The prototypes of 12-slot/8-pole single layer and double layer, doubly salient synchronous reluctance machines have been built to validate the predictions in terms of inductances and torques

    Keeping the proportions of protein complex components in check

    Get PDF
    How do cells maintain relative proportions of protein complex components? Advances in quantitative, genome-wide measurements have begun to shed light onto the roles of protein synthesis and degradation in establishing the precise proportions in living cells: on the one hand, ribosome profiling studies indicate that proteins are already produced in the correct relative proportions. On the other hand, proteomic studies found that many complexes contain subunits that are made in excess and subsequently degraded. Here, we discuss these seemingly contradictory findings, emerging principles, and remaining open questions. We conclude that establishing precise protein levels involves both coordinated synthesis and post-translational fine-tuning via protein degradation
    corecore