11 research outputs found

    Spatio-temporal variation in stable isotope and elemental composition of key-species reflect environmental changes in the Baltic Sea

    No full text
    International audienceAbstract Carbon and nitrogen stable isotope ratios are increasingly used to study long-term change in food web structure and nutrient cycling. We retrospectively analyse elemental composition (C, N and P) and stable isotopes (δ 13 C, δ 15 N) in archived monitoring samples of two important taxa from the bottom of the food web; the filamentous ephemeral macroalgae Cladophora spp. and the blue mussel Mytilus edulis trossulus from three contrasting regions in the Baltic Sea (coastal Bothnian Sea and Baltic Proper, open sea central Baltic). The aim is to statistically link the observed spatial and interannual (8–24 years’ time-series) variability in elemental and isotope baselines with their biomass trends and to the oceanographic monitoring data reflecting the ongoing environmental changes (i.e., eutrophication and climate) in this system. We find clear differences in isotope baselines between the two major Baltic Sea basins. However, the temporal variation in Mytilus δ 13 C was similar among regions and, at the open sea station, mussels and algae δ 13 C also correlated over time, likely reflecting a global (Suess) effect, whereas δ 15 N of both taxa varied with local and regional dissolved nitrogen concentrations in water. δ 15 N in source amino acids allowed detection of diazotrophic N in Mytilus , which was masked in bulk δ 15 N. Finally, Cladophora N:P reflected regional nutrient levels in the water while P%, which differed for both taxa, was linked to food quality for Mytilus . This study highlights the potential of a multi-taxa and multi-stable isotope approach to understand nutrient dynamics and monitor long-term environmental changes

    Diet quality determines blue mussel physiological status: A long-term experimental multi-biomarker approach

    No full text
    International audienceCyanobacterial blooms have increased worldwide and decreases in spring blooms of diatoms in temperate aquatic ecosystems are increasingly reported. Whether such shifts in the food base positively or negatively affect primary consumer's physiological status, growth, and more broadly, ecosystem functioning, is poorly known. Here, we test how a widespread filter-feeding blue mussel from the genus Mytilus reacts to diatoms, filamenous non-toxic cyanobacteria and a mixture of the two in a 50 day feeding experiment and compare with mussels in the field. We use a multi-tracer approach to assess mussels' nutritional and physiological status. Diatoms had highest relative proportions of the essential fatty acids 20:5ω3 (EPA) and 22:6ω3 (DHA), but cyanobacteria had a high relative proportion of polyunsaturated FAs (PUFAs) especially 18:3ω3, a precursor of ω3 FAs. Bulk and amino-acid-δ 15 N demonstrated assimilation of cyanobacterial N or diatom N by the mussels, while fatty acid (FA) composition and δ 13 C-FA analyses demonstrated assimilation of C and FAs from diatoms. Still, C and N from both food sources were utilized when mussels were fed the mix and condition index, scope for growth (SFG; measure of energy status) and the elemental N:P ratio of mussels where higher in mussels fed cyanobacteria only, indicating better growth status in this treatment. It seems like mussels fed cyanobacteria, a food with low proportions of essential FAs compared to diatoms, were able to cover the dietary requirements through FA biosynthesis from precursor FAs. The FA composition and δ 15 N-results from mussels fed cyanobacteria agreed well with seasonal field measurements of mussels. Our study provides the first feeding experiment investigating how blue mussels utilize N from cyanobacteria and shows the rather positive response to this type of food. Our results suggest that imbalances in the biochemical composition of diet of consumers can be overcome through biosynthesis of essential FAs. In the context of climate change with shifting biogeochemical baselines, it is crucial to understand the biological effects of such changes in the quality of the production base

    Dynamics of microbial communities across the three domains of life over an annual cycle with emphasis on marine mucilage in the Southern Bay of Biscay resolved by microbial fingerprinting

    No full text
    International audienceMarine mucilage has been described as worldwide phenomena occurring sporadically, or frequently in certain coastal areas. They are transitory phenomena that can remain in the photic zone for several days or weeks. Their occurrence has been more frequent and persistent, and their magnitude has increased during the last decades. Their formation typically reflects an imbalance in the marine microbial communities, and has frequently be linked to global changes. Recurrent marine mucilage events have been observed in recent years in the Southern Bay of Biscay near the French coast, mainly south of the Adour estuary. In this study, we used a fingerprinting method (T-RFLP) targeting 16S and 18S rRNA genes to investigate marine microbial community composition and dynamics over an annual cycle across the three domains of life in coastal water at three depths, in the Adour River upstream of the mouth and in the marine mucilage. In line with studies conducted in marine environments we highlighted that the dynamics of marine microbial communities in the Bay of Biscay coincided with two environmental contexts: winter and spring on one hand and summer and autumn on the other hand. More interestingly, this dynamics affects also the marine pelagic mucilage that was observed during the sampling campaigns. Thus, the composition of the marine mucilage that appears in winter/spring context diverges from the composition of the marine mucilage that occurred during the summer/autumn context. We highlighted also that marine microbial communities were partly different from marine mucilage communities with an enrichment of some microorganisms suggesting that marine mucilage behaves as a microhabitat in seawater and possesses distinct microbial assemblages from the surrounding communities

    Bivalve tissues as a recorder of multidecadal global anthropogenic and climate‐mediated change in coastal areas

    No full text
    Recent rapid changes in climate and environmental conditions have significantly impacted coastal ecosystem functioning. However, the complex interplay between global and local effects makes it challenging to pinpoint the primary drivers. In a multi‐ecosystem study, we analyzed pluri‐decadal trends of bivalve‐δ13C as recorder of global environmental changes. These trends were correlated with large‐scale natural and anthropogenic climate proxies to identify whether coastal biota responded to global effects. Our findings revealed decreasing bivalve‐δ13C trends in all sea regions, mainly linked with increased temperature and atmospheric‐CO2 concentrations, the later generating a decrease in atmospheric‐CO2 δ13C values (Suess effect) because of fossil‐fuel burning. After removing the Suess effect from bivalve‐δ13C trends, ongoing global climate variability continues to affect most ecosystems, possibly intensified by combined, interacting regional or local effects. These results highlight the need to consider large‐scale effects to fully understand ecosystem and food web responses to the multiple effects of global change

    The role of vital dietary biomolecules in eco-evo-devo dynamics

    Get PDF
    The physiological dependence of animals on dietary intake of vitamins, amino acids, and fatty acids is ubiquitous. Sharp differences in the availability of these vital dietary biomolecules among different resources mean that consumers must adopt a range of strategies to meet their physiological needs. We review the emerging work on omega-3 long-chain polyunsaturated fatty acids, focusing predominantly on predator–prey interactions, to illustrate that trade-off between capacities to consume resources rich in vital biomolecules and internal synthesis capacity drives differences in phenotype and fitness of consumers. This can then feedback to impact ecosystem functioning. We outline how focus on vital dietary biomolecules in eco-eco-devo dynamics can improve our understanding of anthropogenic changes across multiple levels of biological organization

    Relationship between bacterial compartment and particulate organic matter (POM) in coastal systems: An assessment using fatty acids and stable isotopes

    Get PDF
    International audienceParticulate organic matter (POM) in coastal systems is a mixture of different organic matter (OM) sources originating from land and sea. Among sources, bacterial biomass plays a large role in OM processing and carbon recycling in the ocean and is often neglected as a source in common approaches. The present study proposes to use elemental and isotopic ratio of carbon and nitrogen (C:N, δ13C, δ15N) and fatty acids to investigate the relationship between bacteria and surface water POM composition of three systems with different characteristics (two marine and one estuarine) over an annual cycle. Overall, our results highlight a positive relationship between bacterial contribution and continental degraded or undergoing degradation POM for all the studied systems and an inverse relationship with pelagic primary producers. At multisystem scale, high bacterial contribution is linked to high proportion of refractory terrestrial material characterizing estuarine stations whereas in marine systems, the occurrence of bacteria is mainly linked to river POM. Over the annual cycle, bacterial markers are more abundant during the winter period characterized by larger river and/or benthic POM contribution. This seasonal pattern is mainly driven by changes in river flows and resuspension. This study highlights the importance of bacterial compartment as a component of coastal and estuarine POM. Even though these results remains semi-quantitative, similar studies in other types of systems can help to understand microbial role in OM dynamic and to better estimate bacterial source in carbon budgets and food web studies

    Dynamics of particulate organic matter composition in coastal systems: Forcing of spatio-temporal variability at multi-systems scale

    Get PDF
    International audienceIn costal systems, particulate organic matter (POM) results from a multiplicity of sources having their respective dynamics in terms of production, decomposition, transport and burial. The POM pool experiences thus considerable spatial and temporal variability. In order to better understand this variability, the present study employs statistical multivariate analyses to investigate links between POM composition and environmental forcings for a panel of twelve coastal systems distributed along the three maritime regions of France and monitored weekly to monthly for 1 to 8 years.At multi-system scale, two main gradients of POC composition have been identified: a 'Continent-Ocean' gradient associated with hydrodynamics, sedimentary dynamics and depth of the water column, and a gradient of trophic status related to nutrient availability. At local scale, seasonality of POC composition appears to be station-specific but still related to part of the above-mentioned forcings. A typology of systems was established by coupling spatial and temporal variability of POC composition. Four groups were highlighted: (1) the estuarine stations where POC composition is dominated by terrestrial POM and driven by hydrodynamics and sedimentary processes, (2) the oligotrophic systems, characterized by the contribution of diazotrophs due to low nutrient availability, and the marine meso/eutroph systems whose POC composition is (3) either deeply dominated by phytoplankton or (4) dominated by phytoplankton but where the contribution of continental and benthic POC is not negligible and is driven by hydrodynamics, sedimentary processes and the height of the water column.Finally, the present study provides several insights into the different forcings to POM composition and dynamics in temperate coastal systems at local and multi-system scales. This work also presents a methodological approach that establishes statistical links between forcings and POM composition, helping to gain more objectively insight of forcings

    Dynamics of particulate organic matter composition in coastal systems: a spatio-temporal study at multi-systems scale

    No full text
    International audienceIn coastal systems, the multiplicity of sources fueling the pool of particulate organic matter (POM) leads to divergent estimations of POM composition. Eleven systems (two littoral systems, eight embayments and semi-enclosed systems and one estuary) distributed along the three maritime façades of France were studied for two to eight years in order to quantify the relative contribution of organic matter sources to the surface-water POM pool in coastal systems. This study was based on carbon and nitrogen elemental and isotopic ratios, used for running mixing models. The POM of the estuary is dominated by terrestrial material (93% on average), whereas the POM of the other systems is dominated by phytoplankton (84% on average). Nevertheless, for the latter systems, the POM composition varies in space, with 1) systems where POM is highly composed of phytoplankton (≥ 93%), 2) systems characterized by a non-negligible contribution of benthic (8 to 19%) and/or riverine (7 to 19%) sources, and 3) the Mediterranean systems characterized by the contribution of diazotroph organisms (ca. 14%). A continent-to-ocean gradient of riverine and/or benthic POM contribution is observed. Finally, time series reveal 1) seasonal variations of POM composition, 2) differences in seasonality between systems, and 3) an inshore-offshore gradient of seasonality within each system that were sampled at several stations. Spatial and seasonal patterns of POM composition are mainly due to local to regional processes such as hydrodynamics and sedimentary hydrodynamic (e.g. resuspension processes, changes in river flows, wind patterns influencing along-shore currents) but also due to the geomorphology of the systems (depth of the water column, distance to the shore). Future studies investigating the link between these forcings and POM composition would help to better understand the dynamics of POM composition in coastal systems

    Data quality control considerations in multivariate environmental monitoring: experience of the French coastal network SOMLIT

    Get PDF
    International audienceIntroduction While crucial to ensuring the production of accurate and high-quality data—and to avoid erroneous conclusions—data quality control (QC) in environmental monitoring datasets is still poorly documented. Methods With a focus on annual inter-laboratory comparison (ILC) exercises performed in the context of the French coastal monitoring SOMLIT network, we share here a pragmatic approach to QC, which allows the calculation of systematic and random errors, measurement uncertainty, and individual performance. After an overview of the different QC actions applied to fulfill requirements for quality and competence, we report equipment, accommodation, design of the ILC exercises, and statistical methodology specially adapted to small environmental networks (<20 laboratories) and multivariate datasets. Finally, the expanded uncertainty of measurement for 20 environmental variables routinely measured by SOMLIT from discrete sampling—including Essential Ocean Variables—is provided. Results, Discussion, Conclusion The examination of the temporal variations (2001–2021) in the repeatability, reproducibility, and trueness of the SOMLIT network over time confirms the essential role of ILC exercises as a tool for the continuous improvement of data quality in environmental monitoring datasets

    Table_1_Data quality control considerations in multivariate environmental monitoring: experience of the French coastal network SOMLIT.xls

    No full text
    IntroductionWhile crucial to ensuring the production of accurate and high-quality data—and to avoid erroneous conclusions—data quality control (QC) in environmental monitoring datasets is still poorly documented.MethodsWith a focus on annual inter-laboratory comparison (ILC) exercises performed in the context of the French coastal monitoring SOMLIT network, we share here a pragmatic approach to QC, which allows the calculation of systematic and random errors, measurement uncertainty, and individual performance. After an overview of the different QC actions applied to fulfill requirements for quality and competence, we report equipment, accommodation, design of the ILC exercises, and statistical methodology specially adapted to small environmental networks (Results, Discussion, ConclusionThe examination of the temporal variations (2001–2021) in the repeatability, reproducibility, and trueness of the SOMLIT network over time confirms the essential role of ILC exercises as a tool for the continuous improvement of data quality in environmental monitoring datasets.</p
    corecore